Skip to main content

Quadratic programming solvers in Python with a unified API.

Project description

QP Solvers for Python

Build Coverage Documentation Downloads/month Conda version PyPI version

Unified interface to convex Quadratic Programming (QP) solvers available in Python.

Installation

Using PyPI

pip install qpsolvers

Using

conda install qpsolvers -c conda-forge

Check out the documentation for Windows instructions.

Usage

The library provides a one-stop shop solve_qp function with a solver keyword argument to select the backend solver. It solves convex quadratic programs in standard form:

$$ \begin{split} \begin{array}{ll} \underset{x}{\mbox{minimize}} & \frac{1}{2} x^T P x + q^T x \ \mbox{subject to} & G x \leq h \ & A x = b \ & lb \leq x \leq ub \end{array} \end{split} $$

Vector inequalities apply coordinate by coordinate. The function returns the solution $x^*$ found by the solver, or None in case of failure/unfeasible problem. All solvers require the problem to be convex, meaning the matrix $P$ should be positive semi-definite. Some solvers further require the problem to be strictly convex, meaning $P$ should be positive definite.

Dual multipliers: alternatively, the solve_problem function returns a more complete solution object containing both the primal solution and its corresponding dual multipliers.

Example

To solve a quadratic program, build the matrices that define it and call the solve_qp function:

import numpy as np
from qpsolvers import solve_qp

M = np.array([[1.0, 2.0, 0.0], [-8.0, 3.0, 2.0], [0.0, 1.0, 1.0]])
P = M.T @ M  # this is a positive definite matrix
q = np.array([3.0, 2.0, 3.0]) @ M
G = np.array([[1.0, 2.0, 1.0], [2.0, 0.0, 1.0], [-1.0, 2.0, -1.0]])
h = np.array([3.0, 2.0, -2.0])
A = np.array([1.0, 1.0, 1.0])
b = np.array([1.0])

x = solve_qp(P, q, G, h, A, b, solver="proxqp")
print(f"QP solution: x = {x}")

This example outputs the solution [0.30769231, -0.69230769, 1.38461538]. It is also possible to get dual multipliers at the solution, as shown in this example.

Solvers

Solver Keyword Algorithm API License Warm-start
Clarabel clarabel Interior point Sparse Apache-2.0 ✖️
CVXOPT cvxopt Interior point Dense GPL-3.0 ✔️
DAQP daqp Active set Dense MIT ✖️
ECOS ecos Interior point Sparse GPL-3.0 ✖️
Gurobi gurobi Interior point Sparse Commercial ✖️
HiGHS highs Active set Sparse MIT ✖️
MOSEK mosek Interior point Sparse Commercial ✔️
NPPro nppro Active set Dense Commercial ✔️
OSQP osqp Augmented Lagrangian Sparse Apache-2.0 ✔️
ProxQP proxqp Augmented Lagrangian Dense & Sparse BSD-2-Clause ✔️
qpOASES qpoases Active set Dense LGPL-2.1
qpSWIFT qpswift Interior point Sparse GPL-3.0 ✖️
quadprog quadprog Active set Dense GPL-2.0 ✖️
SCS scs Augmented Lagrangian Sparse MIT ✔️

Matrix arguments are NumPy arrays for dense solvers and SciPy Compressed Sparse Column (CSC) matrices for sparse ones.

Frequently Asked Questions

  • Can I print the list of solvers available on my machine?
    • Absolutely: print(qpsolvers.available_solvers)
  • Is it possible to solve a least squares rather than a quadratic program?
    • Yes, there is also a solve_ls function.
  • I have a squared norm in my cost function, how can I apply a QP solver to my problem?
  • I have a non-convex quadratic program. Is there a solver I can use?
  • I get the following build error on Windows when running pip install qpsolvers.
  • Can I help?
    • Absolutely! The first step is to install the library and use it. Report any bug in the issue tracker.
    • If you're a developer looking to hack on open source, check out the contribution guidelines for suggestions.

Benchmark

On a dense problem, the performance of all solvers (as measured by IPython's %timeit on an Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz) is:

Solver Type Time (ms)
qpswift Dense 0.008
quadprog Dense 0.01
qpoases Dense 0.02
osqp Sparse 0.03
scs Sparse 0.03
ecos Sparse 0.27
cvxopt Dense 0.44
gurobi Sparse 1.74
mosek Sparse 7.17

On a sparse problem with n = 500 optimization variables, these performances become:

Solver Type Time (ms)
osqp Sparse 1
qpswift Dense 2
scs Sparse 4
mosek Sparse 17
ecos Sparse 33
cvxopt Dense 51
gurobi Sparse 221
quadprog Dense 427
qpoases Dense 1560

On a model predictive control problem for robot locomotion, we get:

Solver Type Time (ms)
quadprog Dense 0.03
qpswift Dense 0.08
qpoases Dense 0.36
osqp Sparse 0.48
ecos Sparse 0.69
scs Sparse 0.76
cvxopt Dense 2.75

Finally, here is a small benchmark of random dense problems (each data point corresponds to an average over 10 runs):

Note that performances of QP solvers largely depend on the problem solved. For instance, MOSEK performs an automatic conversion to Second-Order Cone Programming (SOCP) which the documentation advises bypassing for better performance. Similarly, ECOS reformulates from QP to SOCP and works best on small problems.

Contributing

We welcome contributions, see Contributing for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qpsolvers-3.3.0.tar.gz (78.0 kB view details)

Uploaded Source

Built Distribution

qpsolvers-3.3.0-py3-none-any.whl (75.6 kB view details)

Uploaded Python 3

File details

Details for the file qpsolvers-3.3.0.tar.gz.

File metadata

  • Download URL: qpsolvers-3.3.0.tar.gz
  • Upload date:
  • Size: 78.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for qpsolvers-3.3.0.tar.gz
Algorithm Hash digest
SHA256 2f46caa7540e7f1c9fc8cbc998d775ff06599c5b35d37b0652f8aa1c225644c7
MD5 43db9b3d56d9d7bd5965b77fe8e40ec1
BLAKE2b-256 5680b6c97086a33ed106afc62e856b55d18172556f20e502d7bcf939fe3ca31f

See more details on using hashes here.

File details

Details for the file qpsolvers-3.3.0-py3-none-any.whl.

File metadata

  • Download URL: qpsolvers-3.3.0-py3-none-any.whl
  • Upload date:
  • Size: 75.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for qpsolvers-3.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8e919436daca03c251133e449965d5995a2cb313e0426fbbca0616d74240b4c7
MD5 4b237fd23e27cc378534d2e3bec6c41b
BLAKE2b-256 13865351a0e0f67437f97e40769e5354c08964613641c0a7a5aef1b65aa89825

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page