Skip to main content

Quadratic programming solvers in Python with a unified API.

Project description

Quadratic Programming Solvers in Python

Build Documentation Coverage

This library provides a one-stop shop solve_qp function to solve convex quadratic programs:

$$ \begin{split} \begin{array}{ll} \underset{x}{\mbox{minimize}} & \frac{1}{2} x^T P x + q^T x \ \mbox{subject to} & G x \leq h \ & A x = b \ & lb \leq x \leq ub \end{array} \end{split} $$

Vector inequalities apply coordinate by coordinate. The function returns the primal solution $x^*$ found by the backend QP solver, or None in case of failure/unfeasible problem. All solvers require the problem to be convex, meaning the matrix $P$ should be positive semi-definite. Some solvers further require the problem to be strictly convex, meaning $P$ should be positive definite.

Dual multipliers: there is also a solve_problem function that returns not only the primal solution, but also its dual multipliers and all other relevant quantities computed by the backend solver.

Example

To solve a quadratic program, build the matrices that define it and call solve_qp, selecting the backend QP solver via the solver keyword argument:

import numpy as np
from qpsolvers import solve_qp

M = np.array([[1.0, 2.0, 0.0], [-8.0, 3.0, 2.0], [0.0, 1.0, 1.0]])
P = M.T @ M  # this is a positive definite matrix
q = np.array([3.0, 2.0, 3.0]) @ M
G = np.array([[1.0, 2.0, 1.0], [2.0, 0.0, 1.0], [-1.0, 2.0, -1.0]])
h = np.array([3.0, 2.0, -2.0])
A = np.array([1.0, 1.0, 1.0])
b = np.array([1.0])

x = solve_qp(P, q, G, h, A, b, solver="proxqp")
print(f"QP solution: x = {x}")

This example outputs the solution [0.30769231, -0.69230769, 1.38461538]. It is also possible to get dual multipliers at the solution, as shown in this example.

Installation

PyPI

PyPI version PyPI downloads

To install the library with open source QP solvers:

pip install qpsolvers[open_source_solvers]

To install only the library itself:

pip install qpsolvers

When imported, qpsolvers loads all the solvers it can find and lists them in qpsolvers.available_solvers.

Conda

Conda version Conda downloads

conda install -c conda-forge qpsolvers

Solvers

Solver Keyword Algorithm API License Warm-start
Clarabel clarabel Interior point Sparse Apache-2.0 ✖️
CVXOPT cvxopt Interior point Dense GPL-3.0 ✔️
DAQP daqp Active set Dense MIT ✖️
ECOS ecos Interior point Sparse GPL-3.0 ✖️
Gurobi gurobi Interior point Sparse Commercial ✖️
HiGHS highs Active set Sparse MIT ✖️
HPIPM hpipm Interior point Dense BSD-2-Clause ✔️
MOSEK mosek Interior point Sparse Commercial ✔️
NPPro nppro Active set Dense Commercial ✔️
OSQP osqp Augmented Lagrangian Sparse Apache-2.0 ✔️
ProxQP proxqp Augmented Lagrangian Dense & Sparse BSD-2-Clause ✔️
qpOASES qpoases Active set Dense LGPL-2.1
qpSWIFT qpswift Interior point Sparse GPL-3.0 ✖️
quadprog quadprog Active set Dense GPL-2.0 ✖️
SCS scs Augmented Lagrangian Sparse MIT ✔️

Matrix arguments are NumPy arrays for dense solvers and SciPy Compressed Sparse Column (CSC) matrices for sparse ones.

Frequently Asked Questions

Benchmark

The results below come from qpsolvers_benchmark, a benchmark for QP solvers in Python.

You can run the benchmark on your machine via a command-line tool (pip install qpsolvers_benchmark). Check out the benchmark repository for details. In the following tables, solvers are called with their default settings and compared over whole test sets by shifted geometric mean ("shm" for short; lower is better). We don't report the GitHub free-for-all test set yet, as it is still too small to be representative.

Maros-Meszaros (hard problems)

Check out the full report for high- and low-accuracy solver settings.

Success rate (%) Runtime (shm) Primal residual (shm) Dual residual (shm) Duality gap (shm) Cost error (shm)
clarabel 89.9 1.0 1.0 1.9 1.0 1.0
cvxopt 53.6 13.8 5.3 2.6 22.9 6.6
gurobi 16.7 57.8 10.5 37.5 94.0 34.9
highs 53.6 11.3 5.3 2.6 21.2 6.1
osqp 41.3 1.8 58.7 22.6 1950.7 42.4
proxqp 77.5 4.6 2.0 1.0 11.5 2.2
scs 60.1 2.1 37.5 3.4 133.1 8.4

Maros-Meszaros dense (subset of dense problems)

Check out the full report for high- and low-accuracy solver settings.

Success rate (%) Runtime (shm) Primal residual (shm) Dual residual (shm) Duality gap (shm) Cost error (shm)
clarabel 100.0 1.0 1.0 78.4 1.0 1.0
cvxopt 66.1 1267.4 292269757.0 268292.6 269.1 72.5
daqp 50.0 4163.4 1056090169.5 491187.7 351.8 280.0
ecos 12.9 27499.0 996322577.2 938191.8 197.6 1493.3
gurobi 37.1 3511.4 497416073.4 13585671.6 4964.0 190.6
highs 64.5 1008.4 255341695.6 235041.8 396.2 54.5
osqp 51.6 371.7 5481100037.5 3631889.3 24185.1 618.4
proxqp 91.9 14.1 1184.3 1.0 71.8 7.2
qpoases 24.2 3916.0 8020840724.2 23288184.8 102.2 778.7
qpswift 25.8 16109.1 860033995.1 789471.9 170.4 875.0
quadprog 62.9 1430.6 315885538.2 4734021.7 2200.0 192.3
scs 72.6 95.6 2817718628.1 369300.9 3303.2 152.5

Contributing

We welcome contributions, see the contribution guidelines for details. We are also looking forward to hearing about your use cases! Please share them in Show and tell.

Citing qpsolvers

If you find this project useful, please consider giving it a :star: or citing it :books: A citation template is available via the Cite this repository button on GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qpsolvers-3.5.0.tar.gz (81.4 kB view details)

Uploaded Source

Built Distribution

qpsolvers-3.5.0-py3-none-any.whl (79.4 kB view details)

Uploaded Python 3

File details

Details for the file qpsolvers-3.5.0.tar.gz.

File metadata

  • Download URL: qpsolvers-3.5.0.tar.gz
  • Upload date:
  • Size: 81.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.25.1

File hashes

Hashes for qpsolvers-3.5.0.tar.gz
Algorithm Hash digest
SHA256 beb969257a67ed11b968eb8533f86393764deac37810355ed5239ee36695a727
MD5 60a423eb88eb4d713f766ae06dedc04d
BLAKE2b-256 1bb4a8e7d06c0f1ddf6b6103922285245fd127f72e838338c862e3fb8925b4d5

See more details on using hashes here.

File details

Details for the file qpsolvers-3.5.0-py3-none-any.whl.

File metadata

  • Download URL: qpsolvers-3.5.0-py3-none-any.whl
  • Upload date:
  • Size: 79.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.25.1

File hashes

Hashes for qpsolvers-3.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3929d04fc5d548b2db91f37c4b7b814af9722de1831382d47b51c8b58432f458
MD5 89cd36431750549bd287cd542e2ac098
BLAKE2b-256 ddc3227b9583c5ee26f4221755cafd4ba0cac2c2435a2d6145cd047846c1f489

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page