Skip to main content

Quadratic programming solvers in Python with a unified API.

Project description

Quadratic Programming Solvers in Python

Build Documentation Coverage

This library provides a one-stop shop solve_qp function to solve convex quadratic programs:

$$ \begin{split} \begin{array}{ll} \underset{x}{\mbox{minimize}} & \frac{1}{2} x^T P x + q^T x \ \mbox{subject to} & G x \leq h \ & A x = b \ & lb \leq x \leq ub \end{array} \end{split} $$

Vector inequalities apply coordinate by coordinate. The function returns the primal solution $x^*$ found by the backend QP solver, or None in case of failure/unfeasible problem. All solvers require the problem to be convex, meaning the matrix $P$ should be positive semi-definite. Some solvers further require the problem to be strictly convex, meaning $P$ should be positive definite.

Dual multipliers: there is also a solve_problem function that returns not only the primal solution, but also its dual multipliers and all other relevant quantities computed by the backend solver.

Example

To solve a quadratic program, build the matrices that define it and call solve_qp, selecting the backend QP solver via the solver keyword argument:

import numpy as np
from qpsolvers import solve_qp

M = np.array([[1.0, 2.0, 0.0], [-8.0, 3.0, 2.0], [0.0, 1.0, 1.0]])
P = M.T @ M  # this is a positive definite matrix
q = np.array([3.0, 2.0, 3.0]) @ M
G = np.array([[1.0, 2.0, 1.0], [2.0, 0.0, 1.0], [-1.0, 2.0, -1.0]])
h = np.array([3.0, 2.0, -2.0])
A = np.array([1.0, 1.0, 1.0])
b = np.array([1.0])

x = solve_qp(P, q, G, h, A, b, solver="proxqp")
print(f"QP solution: x = {x}")

This example outputs the solution [0.30769231, -0.69230769, 1.38461538]. It is also possible to get dual multipliers at the solution, as shown in this example.

Installation

PyPI

PyPI version PyPI downloads

To install the library with open source QP solvers:

pip install qpsolvers[open_source_solvers]

To install a subset of QP solvers:

pip install qpsolvers[clarabel,daqp,proxqp,scs]

To install only the library itself:

pip install qpsolvers

When imported, qpsolvers loads all the solvers it can find and lists them in qpsolvers.available_solvers.

Conda

Conda version Conda downloads

conda install -c conda-forge qpsolvers

Solvers

Solver Keyword Algorithm API License Warm-start
Clarabel clarabel Interior point Sparse Apache-2.0 ✖️
CVXOPT cvxopt Interior point Dense GPL-3.0 ✔️
DAQP daqp Active set Dense MIT ✖️
ECOS ecos Interior point Sparse GPL-3.0 ✖️
Gurobi gurobi Interior point Sparse Commercial ✖️
HiGHS highs Active set Sparse MIT ✖️
HPIPM hpipm Interior point Dense BSD-2-Clause ✔️
MOSEK mosek Interior point Sparse Commercial ✔️
NPPro nppro Active set Dense Commercial ✔️
OSQP osqp Augmented Lagrangian Sparse Apache-2.0 ✔️
PIQP piqp Proximal Interior Point Dense & Sparse BSD-2-Clause ✖️
ProxQP proxqp Augmented Lagrangian Dense & Sparse BSD-2-Clause ✔️
QPALM qpalm Augmented Lagrangian Sparse LGPL-3.0 ✔️
qpOASES qpoases Active set Dense LGPL-2.1
qpSWIFT qpswift Interior point Sparse GPL-3.0 ✖️
quadprog quadprog Active set Dense GPL-2.0 ✖️
SCS scs Augmented Lagrangian Sparse MIT ✔️

Matrix arguments are NumPy arrays for dense solvers and SciPy Compressed Sparse Column (CSC) matrices for sparse ones.

Frequently Asked Questions

Benchmark

The results below come from qpsolvers_benchmark, a benchmark for QP solvers in Python.

You can run the benchmark on your machine via a command-line tool (pip install qpsolvers_benchmark). Check out the benchmark repository for details. In the following tables, solvers are called with their default settings and compared over whole test sets by shifted geometric mean ("shm" for short; lower is better and 1.0 is the best).

Maros-Meszaros (hard problems)

Check out the full report for high- and low-accuracy solver settings.

Success rate (%) Runtime (shm) Primal residual (shm) Dual residual (shm) Duality gap (shm) Cost error (shm)
clarabel 89.9 1.0 1.0 1.9 1.0 1.0
cvxopt 53.6 13.8 5.3 2.6 22.9 6.6
gurobi 16.7 57.8 10.5 37.5 94.0 34.9
highs 53.6 11.3 5.3 2.6 21.2 6.1
osqp 41.3 1.8 58.7 22.6 1950.7 42.4
proxqp 77.5 4.6 2.0 1.0 11.5 2.2
scs 60.1 2.1 37.5 3.4 133.1 8.4

Maros-Meszaros dense (subset of dense problems)

Check out the full report for high- and low-accuracy solver settings.

Success rate (%) Runtime (shm) Primal residual (shm) Dual residual (shm) Duality gap (shm) Cost error (shm)
clarabel 100.0 1.0 1.0 78.4 1.0 1.0
cvxopt 66.1 1267.4 292269757.0 268292.6 269.1 72.5
daqp 50.0 4163.4 1056090169.5 491187.7 351.8 280.0
ecos 12.9 27499.0 996322577.2 938191.8 197.6 1493.3
gurobi 37.1 3511.4 497416073.4 13585671.6 4964.0 190.6
highs 64.5 1008.4 255341695.6 235041.8 396.2 54.5
osqp 51.6 371.7 5481100037.5 3631889.3 24185.1 618.4
proxqp 91.9 14.1 1184.3 1.0 71.8 7.2
qpoases 24.2 3916.0 8020840724.2 23288184.8 102.2 778.7
qpswift 25.8 16109.1 860033995.1 789471.9 170.4 875.0
quadprog 62.9 1430.6 315885538.2 4734021.7 2200.0 192.3
scs 72.6 95.6 2817718628.1 369300.9 3303.2 152.5

Citing qpsolvers

If you find this project useful, please consider giving it a :star: or citing it if your work is scientific:

@software{qpsolvers_2023,
  author = {Caron, Stéphane and Arnström, Daniel and Bonagiri, Suraj and Dechaume, Antoine and Flowers, Nikolai and Heins, Adam and Ishikawa, Takuma and Kenefake, Dustin and Mazzamuto, Giacomo and Meoli, Donato and O'Donoghue, Brendan and Oppenheimer, Adam A. and Pandala, Abhishek and Quiroz Omaña, Juan José and Rontsis, Nikitas and Shah, Paarth and St-Jean, Samuel and Vitucci, Nicola and Wolfers, Soeren and @bdelhaisse and @MeindertHH and @rimaddo and @urob and @shaoanlu},
  license = {LGPL-3.0},
  month = dec,
  title = {{qpsolvers: Quadratic Programming Solvers in Python}},
  url = {https://github.com/qpsolvers/qpsolvers},
  version = {4.1.1},
  year = {2023}
}

A citation template is also available via the Cite this repository button on GitHub.

Contributing

We welcome contributions, see the contribution guidelines for details. We are also looking forward to hearing about your use cases! Please share them in Show and tell.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qpsolvers-4.1.1.tar.gz (88.1 kB view details)

Uploaded Source

Built Distribution

qpsolvers-4.1.1-py3-none-any.whl (87.7 kB view details)

Uploaded Python 3

File details

Details for the file qpsolvers-4.1.1.tar.gz.

File metadata

  • Download URL: qpsolvers-4.1.1.tar.gz
  • Upload date:
  • Size: 88.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for qpsolvers-4.1.1.tar.gz
Algorithm Hash digest
SHA256 c7a4b297b56a6b44270b9bc0c57122a211cc61aaae6bcd1e9fa49ff9340ce614
MD5 c14c6b3321c471d71ff919f58cb67d28
BLAKE2b-256 888a4f26c3a0a5f74cf36edd8e22204f6dfc2800c35c68b090370a7b81e934b1

See more details on using hashes here.

File details

Details for the file qpsolvers-4.1.1-py3-none-any.whl.

File metadata

  • Download URL: qpsolvers-4.1.1-py3-none-any.whl
  • Upload date:
  • Size: 87.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for qpsolvers-4.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 54c85c44b739961dfde04706f3476d97a93273579116e56475e5dfec8762714b
MD5 3a01316c356ed2ad5a8e0f475d28b160
BLAKE2b-256 e5db2288a8eddda0927e9b24e40b02bcc0377c871eea69fa4d58834f5c9ab261

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page