Skip to main content

No project description provided

Project description

QRev Instructor

QRev Instructor is a Python wrapper around the instructor module, providing a unified interface for working with different language models from OpenAI and Anthropic.

Features

  • Supports both OpenAI and Anthropic models
  • Easy-to-use client initialization
  • Automatic model type detection
  • Case-insensitive enum handling
  • Extensible for other API types

Installation

To install QRev Instructor, use pip:

pip install qrev-instructor

For Anthropic (Claude models)

pip install qrev-instructor[anthropic]

Usage

Here's a basic example of how to use QRev Instructor:

from qrev_instructor import get_client
from pydantic import BaseModel

class User(BaseModel):
    name: str
    age: int

model_name="gpt-3.5-turbo" # for OpenAI
# model_name="claude-3-haiku-20240307" # uncomment for Anthropic

# Initialize the client
client = get_client(model=model_name)

# Use the client to create a response
response = client.messages.create(
    model=model_name,
    messages=[
        {
            "role": "user",
            "content": "Jason is 25 years old.",
        }
    ],
    response_model=User
)

print(f"Name: {response.name}, Age: {response.age}")
# prints "Name: Jason, Age: 25"

Supported Models

Anthropic Models:

  • CLAUDE_3_OPUS_20240229 = "claude-3-opus-20240229"
  • CLAUDE_3_HAIKU_20240307 = "claude-3-haiku-20240307"
  • CLAUDE_3_5_SONNET_20240620 = "claude-3-5-sonnet-20240620"
  • CLAUDE_3_SONNET_20240229 = "claude-3-sonnet-20240229"

OpenAI Models:

  • GPT_3_5_TURBO_0125 = "gpt-3.5-turbo-0125"
  • GPT_3_5_TURBO = "gpt-3.5-turbo"
  • GPT_3_5_TURBO_INSTRUCT = "gpt-3.5-turbo-instruct"
  • GPT_4 = "gpt-4"
  • GPT_4O = "gpt-4o"
  • GPT_4O_2024_05_13 = "gpt-4o-2024-05-13"
  • DAVINCI = "davinci"
  • CURIE = "curie"

Testing

The package includes pytest-based tests for both OpenAI and Anthropic clients. To run the tests:

make test

Dependencies

  • instructor
  • anthropic (optional, for Anthropic models)
  • pydantic

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qrev_instructor-0.5.6.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

qrev_instructor-0.5.6-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file qrev_instructor-0.5.6.tar.gz.

File metadata

  • Download URL: qrev_instructor-0.5.6.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for qrev_instructor-0.5.6.tar.gz
Algorithm Hash digest
SHA256 9ee7d5f53fc6eae685f2c75d5a6a8578b68ba950902ff26816316fb577d8f6ba
MD5 f1eddbec91583a70818936441e78bf4f
BLAKE2b-256 a057b2a336f919d8892bed4b82f1f999765172e4f0b3cf63bbaaed3bc0570f0c

See more details on using hashes here.

File details

Details for the file qrev_instructor-0.5.6-py3-none-any.whl.

File metadata

  • Download URL: qrev_instructor-0.5.6-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for qrev_instructor-0.5.6-py3-none-any.whl
Algorithm Hash digest
SHA256 26545f8d9e785dfb3f9dcead57ddede213391d75e68c5bbe16e565fc224c248a
MD5 a71bac1aa6956a2b14754bc085d10e3b
BLAKE2b-256 cc36eec74e8648fc4490d82618c74c07461c7baf09e49fa28d472d8698f20bc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page