Skip to main content

No project description provided

Project description

QRev Instructor

QRev Instructor is a Python wrapper around the instructor module, providing a unified interface for working with different language models from OpenAI and Anthropic.

Features

  • Supports both OpenAI and Anthropic models
  • Easy-to-use client initialization
  • Automatic model type detection
  • Case-insensitive enum handling
  • Extensible for other API types

Installation

To install QRev Instructor, use pip:

pip install qrev-instructor

For Anthropic (Claude models)

pip install qrev-instructor[anthropic]

Usage

Here's a basic example of how to use QRev Instructor:

from qrev_instructor import get_client
from pydantic import BaseModel

class User(BaseModel):
    name: str
    age: int

model_name="gpt-3.5-turbo" # for OpenAI
# model_name="claude-3-haiku-20240307" # uncomment for Anthropic

# Initialize the client
client = get_client(model=model_name)

# Use the client to create a response
response = client.messages.create(
    model=model_name,
    messages=[
        {
            "role": "user",
            "content": "Jason is 25 years old.",
        }
    ],
    response_model=User
)

print(f"Name: {response.name}, Age: {response.age}")
# prints "Name: Jason, Age: 25"

Supported Models

Anthropic Models:

  • CLAUDE_3_OPUS_20240229 = "claude-3-opus-20240229"
  • CLAUDE_3_HAIKU_20240307 = "claude-3-haiku-20240307"
  • CLAUDE_3_5_SONNET_20240620 = "claude-3-5-sonnet-20240620"
  • CLAUDE_3_SONNET_20240229 = "claude-3-sonnet-20240229"

OpenAI Models:

  • GPT_3_5_TURBO_0125 = "gpt-3.5-turbo-0125"
  • GPT_3_5_TURBO = "gpt-3.5-turbo"
  • GPT_3_5_TURBO_INSTRUCT = "gpt-3.5-turbo-instruct"
  • GPT_4 = "gpt-4"
  • GPT_4O = "gpt-4o"
  • GPT_4O_2024_05_13 = "gpt-4o-2024-05-13"
  • DAVINCI = "davinci"
  • CURIE = "curie"

Testing

The package includes pytest-based tests for both OpenAI and Anthropic clients. To run the tests:

make test

Dependencies

  • instructor
  • anthropic (optional, for Anthropic models)
  • pydantic

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qrev_instructor-0.5.7.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

qrev_instructor-0.5.7-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file qrev_instructor-0.5.7.tar.gz.

File metadata

  • Download URL: qrev_instructor-0.5.7.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for qrev_instructor-0.5.7.tar.gz
Algorithm Hash digest
SHA256 63ef3ce348bfea734b635d8b8f5c5c58d6e2fdfd5a8009c79d90404431a47980
MD5 7011ccc05ca1ac7bbf52e074ae0420b8
BLAKE2b-256 aaec2e158408e6c824c5ed4bc16980ee4c1b727af156581faea3a7e06b95d7a4

See more details on using hashes here.

File details

Details for the file qrev_instructor-0.5.7-py3-none-any.whl.

File metadata

  • Download URL: qrev_instructor-0.5.7-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for qrev_instructor-0.5.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e9cbbbb3532a119fb445948850ea3637b8bf4218735899c22f9e918dda1b1099
MD5 ae18b0fda81cd8412a1514f080358ba6
BLAKE2b-256 b131cf003ab6ef6d0c5925719f58e978c11e2c141989cc04cadcccb1163b1378

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page