Data science toolkit (TK) from Quality-Safety research Institute (QSI).
Project description
qsi-tk
Data science toolkit (TK) from Quality-Safety research Institute (QSI)
Installation
pip install qsi-tk
Contents
This package is a master library containing various previous packages published by our team.
module | sub-module | description | standalone pypi package | publication |
qsi.io | File I/O, Dataset loading | |||
qsi.vis | Plotting | |||
qsi.cs | compressed sensing | cs1 | Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, SCI, IF 6.057. JCR Q1, 2020, doi: 10.1016/j.talanta.2019.120681 | |
qsi.fs | feature selection | |||
qsi.dr | qsi.dr.metrics | Dimensionality Reduction (DR) quality metrics | pyDRMetrics, wDRMetrics | pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2021.e06199. |
qsi.dr.mf | matrix-factorization based DR | pyMFDR | ||
qsi.cla | qsi.cla.metrics | classifiability analysis | pyCLAMs, wCLAMs | A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, SCI, IF 5.086. JCR Q1, 2021, doi: 10.1007/s10489-021-02810-8 pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, SCI, IF 1.959, 2022, doi: 10.1016/j.softx.2022.101007 |
qsi.cla.ensemble | homo-stacking, hetero-stacking, FSSE | pyNNRW | Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, SCI, IF 4.098. JCR Q1, 2022, doi: 10.1016/j.saa.2022.121348 | |
qsi.cla.kernel | kernel-NNRW | |||
qsi.cla.nnrw | neural networks with random weights | |||
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qsi-tk-0.1.9.tar.gz
(38.4 MB
view details)
Built Distribution
qsi_tk-0.1.9-py3-none-any.whl
(38.5 MB
view details)
File details
Details for the file qsi-tk-0.1.9.tar.gz
.
File metadata
- Download URL: qsi-tk-0.1.9.tar.gz
- Upload date:
- Size: 38.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c1aa111d648a164570bdfe15447d336414bb886e45f33e0a4ce86115d7794d0 |
|
MD5 | 9b2e5bf1c3878d1b385abd4b12c506cc |
|
BLAKE2b-256 | 82b65be539d3983d478a664cdf3b9168490ce40de8c86d64de199a48375d39b9 |
File details
Details for the file qsi_tk-0.1.9-py3-none-any.whl
.
File metadata
- Download URL: qsi_tk-0.1.9-py3-none-any.whl
- Upload date:
- Size: 38.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eeb68d2075b7d77f729d96f640e77539c17bcf594d70ad3af41234709333182a |
|
MD5 | 4663ff4589b2434b7dad7e15fc4d8147 |
|
BLAKE2b-256 | 6cd05af14eee945eaef210fc1b9ec0a30a5be507dd8052d62d93c411d979da7f |