Skip to main content

Data science toolkit (TK) from Quality-Safety research Institute (QSI).

Project description

qsi-tk

Data science toolkit (TK) from Quality-Safety research Institute (QSI)

Installation

pip install qsi-tk

Contents

This package is a master library containing various previous packages published by our team.

module sub-module description standalone pypi package publication
qsi.io File I/O, Dataset loading TODO qsi-tk open datasets with algorithms
qsi.io.aug Data augmentation, e.g., generative models TODO Data aug with deep generative models. e.g., " variational autoencoders, generative adversarial networks, autoregressive models, KDE, normalizing flow models, energy-based models, and score-based models. "
qsi.io.pre Data processing, e.g., channel alignment and 1D-laplacian kernel fs for e-nose data; x-binning, baseline removal for TOF MS. TODO
qsi.vis Plotting
qsi.cs compressed sensing cs1 Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
Secured telemetry based on time-variant sensing matrix – An empirical study of spectroscopic profiling, Smart Agricultural Technology, Volume 5, 2023, doi: 10.1016/j.atech.2023.100268
qsi.fs
qsi.fs.nch_time_series_fs multi-channel enose data fs with 1d-laplacian conv kernel 基于电子鼻和一维拉普拉斯卷积核的奶粉基粉产地鉴别
qsi.fs.glasso Structured-fs of Raman data with group lasso in progress
qsi.kernel kernels ackl Analytical chemistry kernel library for spectroscopic profiling data, Food Chemistry Advances, Volume 3, 2023, 100342, ISSN 2772-753X, https://doi.org/10.1016/j.focha.2023.100342.
qsi.dr qsi.dr.metrics Dimensionality Reduction (DR) quality metrics pyDRMetrics, wDRMetrics pyDRMetrics - A Python toolkit for dimensionality reduction quality assessment, Heliyon, Volume 7, Issue 2, 2021, e06199, ISSN 2405-8440, doi: 10.1016/j.heliyon.2021.e06199.
qsi.dr.mf matrix-factorization based DR pyMFDR Matrix Factorization Based Dimensionality Reduction Algorithms - A Comparative Study on Spectroscopic Profiling Data [J], Analytical Chemistry, 2022. doi: 10.1021/acs.analchem.2c01922
qsi.cla qsi.cla.metrics classifiability analysis pyCLAMs, wCLAMs A unified classifiability analysis framework based on meta-learner and its application in spectroscopic profiling data [J]. Applied Intelligence, 2021, doi: 10.1007/s10489-021-02810-8
pyCLAMs: An integrated Python toolkit for classifiability analysis [J]. SoftwareX, 2022, doi: 10.1016/j.softx.2022.101007
qsi.cla.ensemble homo-stacking, hetero-stacking, FSSE pyNNRW Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348
qsi.cla.kernel kernel-NNRW
qsi.cla.nnrw neural networks with random weights
qsi.pipeline General data analysis pipelines.
qsi.gui Web-based apps. e.g., `python -m qsi.gui.chaihu` will launch the app for bupleurum origin discrimination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

qsi_tk-1.1.0-py3-none-any.whl (78.7 MB view details)

Uploaded Python 3

File details

Details for the file qsi_tk-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: qsi_tk-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 78.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for qsi_tk-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a9a2e8d9f9cb6ad0dc6a690a4ef74106277e874251189a359c5dbd6e2fa857d6
MD5 d5c679d878167cab92853fdeb0666017
BLAKE2b-256 3fa8ad9dc758855c1a772fe7b4341d5ca75c267f40dd79415874dd3bee88ae43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page