A simulation of quantum circuits in python
Project description
Qsiml is a Python-based quantum computing simulator that provides a minimalist approach to quantum circuit simulation.
Installation
pip install qsiml
Quantum Circuit
A quantum circuit is represented by the QuantumCircuit
class. It manages a collection of qubits and applies quantum gates to manipulate their states.
from qsiml import QuantumCircuit
qc = QuantumCircuit(n) # Creates a circuit with `n` qubits
Gates
Single-Qubit Gates
-
Hadamard (H): Creates superposition
qc.h(qubit)
-
Pauli-X (NOT): Bit flip
qc.px(qubit)
-
Pauli-Y: Rotation around Y-axis
qc.py(qubit)
-
Pauli-Z: Phase flip
qc.pz(qubit)
-
Phase (P): Applies a phase shift
qc.phase(qubit, theta)
-
Rotation Gates: Rotate around X, Y, or Z axis
qc.rx(qubit, theta) qc.ry(qubit, theta) qc.rz(qubit, theta)
where θ is the rotation angle in radians.
Multi-Qubit Gates
-
CNOT: Controlled-NOT
qc.cnot(control, target)
-
SWAP: Swaps two qubits
qc.swap(qubit1, qubit2)
-
Toffoli (CCNOT): Controlled-Controlled-NOT
qc.ccnot(control1, control2, target)
-
Fredkin (CSWAP): Controlled-SWAP
qc.cswap(control, target1, target2)
Measurement
Measure all qubits, collapsing the state vector:
result = qc.measure_all() # collapses the state vector to a single basis states
# returns a bitstring of the basis state and stores the collapsed state in qc.classical_bits
Measure a specific qubit, partially collapsing the state vector.
qc.measure(qubit) # classical state of qn is stored in qc.classical_bits[n]
Circuit Visualization
from qsiml import QuantumCircuit
qc = QuantumCircuit(5)
qc.px(0)
qc.h(1)
qc.h(2)
qc.h(3)
qc.ccnot(1, 2, 3)
qc.ccnot(2, 3, 4)
Display the circuit as an ASCII diagram:
qc.draw("Circuit Visualization: ")
Circuit Visualization
|q0⟩—X————————————————
|q1⟩————H————————●————
│
|q2⟩———————H—————●——●—
│ │
|q3⟩——————————H——⨁——●—
│
|q4⟩————————————————⨁—
qc.operations("Operations: ")
prints the gates applied with respect to time:
Operations:
1. X on qubit 0
2. H on qubit 1
3. H on qubit 2
4. H on qubit 3
5. CCNOT on qubits 1, 2, 3
6. CCNOT on qubits 2, 3, 4
print(qc.circuit)
prints the internal circuit representation
[('X', [0]), ('H', [1]), ('H', [2]), ('H', [3]), ('CCNOT', [1, 2, 3]), ('CCNOT', [2, 3, 4])]
State Inspection
View the circuit's state without collapsing it.
qc.dump("Dump table: ")
prints a table which shows the amplitude, probability, and phase of each possible basis state.
Dump Table:
+---------------+---------------+----------------------+---------+
| Basis State | Probability | Amplitude | Phase |
+===============+===============+======================+=========+
| |00001⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |00011⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |00101⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |00111⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |01001⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |01011⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |11101⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
| |11111⟩ | 12.500000% | 0.353553 + 0.000000i | 0 |
+---------------+---------------+----------------------+---------+
Examples
Bell State Preparation
qc = QuantumCircuit(2)
qc.h(0)
qc.cnot(0, 1)
qc.draw("Bell State diagram: ")
qc.dump("Bell State dump table: ")
Output:
Bell State diagram:
|q0⟩—H——●—
│
|q1⟩————⨁—
Bell State dump table:
+---------------+---------------+----------------------+---------+
| Basis State | Probability | Amplitude | Phase |
+===============+===============+======================+=========+
| |00⟩ | 50.000000% | 0.707107 + 0.000000i | 0 |
| |11⟩ | 50.000000% | 0.707107 + 0.000000i | 0 |
+---------------+---------------+----------------------+---------+
Quantum Fourier Transform (2 qubits)
qc = QuantumCircuit(2)
qc.h(0)
qc.phase(1, np.pi/2)
qc.cnot(0, 1)
qc.h(1)
qc.swap(0, 1)
qc.draw("Draw: ")
qc.dump("Dump: ")
Draw:
|q0⟩—H—————————————●—————x—
│ │
|q1⟩————-P(1.5707)—⨁——H——x—
Dump:
+---------------+---------------+-----------------------+---------+
| Basis State | Probability | Amplitude | Phase |
+===============+===============+=======================+=========+
| |00⟩ | 56.250000% | 0.750000 + 0.000000i | 0 |
| |01⟩ | 56.250000% | 0.750000 + 0.000000i | 0 |
| |10⟩ | 31.250000% | 0.250000 + 0.500000i | 1.10715 |
| |11⟩ | 31.250000% | -0.250000 + 0.500000i | 2.03444 |
+---------------+---------------+-----------------------+---------+
Theory for nerds
Quantum computing leverages the principles of quantum mechanics to perform computations. Unlike classical bits, which can be in one of two states (0 or 1), quantum bits (qubits) can exist in a superposition of states, represented as a linear combination of basis states:
|ψ⟩ = α|0⟩ + β|1⟩
where α
and β
are complex numbers satisfying |α⟩^2 + |β⟩^2 = 1.0
A trivial example to illustrate the, albeit niche, advantage of quantum computing over classical computing is the Deutsch-Jozsa algorithm. In the problem, we're given a black box quantum computer known as an oracle that implements some function f: {0, 1}ⁿ-> {0, 1}
, which takes an n-bit binary value as input and returns either a 0 or a 1 for each input. The function output is either constant, either 1 OR 0 for all inputs, or balanced, 0 for exactly half of the input domain and 1 for the other half. The task is to determine if f
is constant or balanced using the function.
the deterministic classical approach requires 2^(n - 1) + 1
evaluations to prove that f is either constant or balanced. It needs to map half + 1 the set of inputs to evaluate, with 100% certainty, the nature of the oracle. If n := 2
:
x (input) | f(x) (output) |
---|---|
00 | 0 |
01 | 0 |
10 | 1 |
00 | 1 |
Only the first 3 calculations are required to determine that the oracle is balanced. Though, the computational complexity increases exponentially, which makes it more expensive to solve for larger values of n
.
This is where quantum computing shines. The Deutsch-Jozsa algorithm applies the oracle to a superposition of all possible inputs, represented by n + 1
, where the first n
qubits are initialized to |0⟩, and the last one is initialized to |1⟩.
n = 10
qc = QuantumCircuit(n + 1) # initialize a circuit with n + 1 qubits
qc.px(n) # initialize the last qubit to |1⟩
Apply the Hadamard gate to all qubits to create a superposition of all possible states (try it!)
# applies the hadamard gate to all qubits in the system
for i in range(n + 1):
qc.h(i)
The next step is to create an oracle. The oracle essentially acts as a query system, which is easy to represent in classical computing by storing the mapped value in a certain memory register. In quantum computing however, this is impractical. We'll have to create a custom quantum circuit representation of an oracle. We'll use the n + 1
th qubit as an ancilla qubit that is initialized to a state of |1⟩, and the first n
qubits as the query. For a balanced function, the oracle should flip the ancilla qubit for exactly half of the input states.
import numpy as np
random_bits = np.random.randint(1, 2**n) # returns a random integer between 1 and 2**n - 1 inclusive.
for i in range(n):
# applies cnot with control bits that lie within the randomly generated binary number. If `random_bit` = `101`, then qubits 0 and 2 would be used as control bits.
if a & (1 << i):
qc.cnot(i, n)
Afterwards, we revert the query qubits back to their original state by applying the hadamard gate
for i in range(n):
qc.h(i)
Finally, we measure the query qubits individually
for i in range(n):
qc.measure(i)
The measured values of the nth qubit are stored in qc.classical_bits[n]
. If all measured values are 0, i.e. qc.classical_bits[0..n]
, then the oracle is a constant function. Anything other than that, the oracle is a balanced function.
Now that a balanced oracle function has been implemented, we can implement a constant oracle.
from qsiml import QuantumCircuit
import numpy as np
class DeutschJozsa():
def __init__(self, n: int = 10):
self.qc = QuantumCircuit(n + 1)
self.n = n
def constant_oracle(self, constant_value: int):
if constant_value == 0:
self.qc.i(self.n)
else:
self.qc.px(self.n)
def balanced_oracle(self, random_bits: int):
for i in range(self.n):
if random_bits & (1 << i):
self.qc.cnot(i, self.n)
def deutsch_jozsa(self):
n = self.n
constant_or_balanced = np.random.randint(0, 2)
constant_value = np.random.randint(0, 2)
random_bits = np.random.randint(1, 2**n)
self.qc.px(n)
for i in range(n + 1):
self.qc.h(i)
if constant_or_balanced == 0:
self.constant_oracle(constant_value)
else:
self.balanced_oracle(random_bits)
for i in range(n):
self.qc.h(i)
for i in range(n):
self.qc.measure(i)
self.qc.draw()
print("Classical Bits: ", self.qc.classical_bits[:-1])
dj = DeutschJozsa(10)
dj.deutsch_jozsa()
returns this for a constant oracle (Notice how every measured value is 0):
|q00⟩—H——————————————————————————————————————H—————————————————————————————M————————————————————————————
0
|q01⟩————H——————————————————————————————————————H—————————————————————————————M—————————————————————————
0
|q02⟩———————H——————————————————————————————————————H—————————————————————————————M——————————————————————
0
|q03⟩——————————H——————————————————————————————————————H—————————————————————————————M———————————————————
0
|q04⟩—————————————H——————————————————————————————————————H—————————————————————————————M————————————————
0
|q05⟩————————————————H——————————————————————————————————————H—————————————————————————————M—————————————
0
|q06⟩———————————————————H——————————————————————————————————————H—————————————————————————————M——————————
0
|q07⟩——————————————————————H——————————————————————————————————————H—————————————————————————————M———————
0
|q08⟩—————————————————————————H——————————————————————————————————————H—————————————————————————————M————
0
|q09⟩————————————————————————————H——————————————————————————————————————H—————————————————————————————M—
0
|q10⟩———————————————————————————————X——H——X—————————————————————————————————————————————————————————————
Classical Bits: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
And this for a balanced oracle (The measured values form a non-zero bitstring)
|q00⟩—H——————————————————————————————————————————————————H—————————————————————————————M————————————————————————————
0
|q01⟩————H————————————————————————————————●—————————————————H—————————————————————————————M—————————————————————————
│ 1
|q02⟩———————H—————————————————————————————│————————————————————H—————————————————————————————M——————————————————————
│ 0
|q03⟩——————————H——————————————————————————│———————————————————————H—————————————————————————————M———————————————————
│ 0
|q04⟩—————————————H———————————————————————│——————————————————————————H—————————————————————————————M————————————————
│ 0
|q05⟩————————————————H————————————————————│—————————————————————————————H—————————————————————————————M—————————————
│ 0
|q06⟩———————————————————H—————————————————│——●—————————————————————————————H—————————————————————————————M——————————
│ │ 1
|q07⟩——————————————————————H——————————————│——│——●—————————————————————————————H—————————————————————————————M———————
│ │ │ 1
|q08⟩—————————————————————————H———————————│——│——│——●—————————————————————————————H—————————————————————————————M————
│ │ │ │ 1
|q09⟩————————————————————————————H————————│——│——│——│——●—————————————————————————————H—————————————————————————————M—
│ │ │ │ │ 1
|q10⟩———————————————————————————————X——H——⨁——⨁——⨁——⨁——⨁—————————————————————————————————————————————————————————————
Classical Bits: [0, 1, 0, 0, 0, 0, 1, 1, 1, 1]
You can import this class using:
from qsiml import DeutschJozsa
State Vector Representation
In Qsiml, an n-qubit system is represented by a 2^n dimensional complex vector, known as the state vector. For example, a two-qubit system is represented by a 4-dimensional vector:
|ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩
where |α|^2 + |β|^2 + |γ|^2 + |δ|^2 = 1
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file qsiml-0.0.5.tar.gz
.
File metadata
- Download URL: qsiml-0.0.5.tar.gz
- Upload date:
- Size: 27.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae3dc014d4298b0571fe0a0edc8968b3df9292f2f3f17f84fdfcf9faedd72e0d |
|
MD5 | 462771834334e6ae39e9d8e9d772d797 |
|
BLAKE2b-256 | 62ae18fe893f63ba833b2f2e99402e562aab4977b45a88cd62b3ab1e217ef58e |
File details
Details for the file qsiml-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: qsiml-0.0.5-py3-none-any.whl
- Upload date:
- Size: 24.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3884aed3af3836a67a4524bc908c7ba42575d5a2b6db23844904176262bb6c75 |
|
MD5 | 502c91d970b8445cad2260b96b3914c8 |
|
BLAKE2b-256 | b7a52af32c9c5ab426726955c1063c246565808f057e9b57f01079c176da7911 |