Skip to main content

Robust quad-tree based registration on whole slide images

Project description

Robust quad-tree based registration on whole slide images

PyPI version fury.io MIT license

This is a library that implements a quad-tree based registration on whole slide images.

Core features

  • Whole Slide Image support
  • Robust and fast
  • Rigid and non-rigid transformation

Additional Requirements

Install OpennSlide

Notebooks

Example notebooks are in the demo folder or Collab.

Ho-To:

Import package and create Quad-Tree.

import qt_wsi_reg.registration_tree as registration

parameters = {
    # feature extractor parameters
    "point_extractor": "sift",  #orb , sift
    "maxFeatures": 512, 
    "crossCheck": False, 
    "flann": False,
    "ratio": 0.6, 
    "use_gray": False,

    # QTree parameter 
    "homography": True,
    "filter_outliner": False,
    "debug": False,
    "target_depth": 1,
    "run_async": True,
    "num_workers: 2,
    "thumbnail_size": (1024, 1024)
}

qtree = registration.RegistrationQuadTree(source_slide_path=Path("examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs"), target_slide_path="examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs", **parameters)

Show some registration debug information.

qtree.draw_feature_points(num_sub_pic=5, figsize=(10, 10))

Show annotations on the source and target image in the format:

[["center_x", "center_y", "anno_width", "anno_height"]]

annos = np.array([["center_x", "center_y", "anno_width", "anno_height"]])
qtree.draw_annotations(annos, num_sub_pic=5, figsize=(10, 10))

Transform coordinates

box = [source_anno.center_x, source_anno.center_y, source_anno.anno_width, source_anno.anno_height]

trans_box = qtree.transform_boxes(np.array([box]))[0]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qt-wsi-registration-0.0.10.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

qt_wsi_registration-0.0.10-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file qt-wsi-registration-0.0.10.tar.gz.

File metadata

  • Download URL: qt-wsi-registration-0.0.10.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.13

File hashes

Hashes for qt-wsi-registration-0.0.10.tar.gz
Algorithm Hash digest
SHA256 d25c0fa791687a8a2fd906725efc83c5f0f26daaf8cb2232d8f84f46eec17862
MD5 26c3d5d3662e255814a00cf140e4d552
BLAKE2b-256 ca8ba18b25cecc3d9a249aaf2e4d08315d395b6195884d24169d25cc0b4fec4b

See more details on using hashes here.

File details

Details for the file qt_wsi_registration-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for qt_wsi_registration-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 7dbea3cb377410c5af9732ba2aa112836643b8eed10314e893101e0a5eb3b787
MD5 adda29f79e93ea9cf6a0c5213e936eac
BLAKE2b-256 342d6868444d366fcd7d76cdeef1043878bca729f8792f7a71ba22ca63f60539

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page