Robust quad-tree based registration on whole slide images
Project description
Robust quad-tree based registration on whole slide images
This is a library that implements a quad-tree based registration on whole slide images.
Core features
- Whole Slide Image support
- Robust and fast
- Rigid and non-rigid transformation
Additional Requirements
Notebooks
Example notebooks are in the demo folder or .
Ho-To:
Import package and create Quad-Tree.
import qt_wsi_reg.registration_tree as registration
parameters = {
# feature extractor parameters
"point_extractor": "sift", #orb , sift
"maxFeatures": 512,
"crossCheck": False,
"flann": False,
"ratio": 0.6,
"use_gray": False,
# QTree parameter
"homography": True,
"filter_outliner": False,
"debug": False,
"target_depth": 1,
"run_async": True,
"num_workers: 2,
"thumbnail_size": (1024, 1024)
}
qtree = registration.RegistrationQuadTree(source_slide_path=Path("examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs"), target_slide_path="examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs", **parameters)
Show some registration debug information.
qtree.draw_feature_points(num_sub_pic=5, figsize=(10, 10))
Show annotations on the source and target image in the format:
[["center_x", "center_y", "anno_width", "anno_height"]]
annos = np.array([["center_x", "center_y", "anno_width", "anno_height"]])
qtree.draw_annotations(annos, num_sub_pic=5, figsize=(10, 10))
Transform coordinates
box = [source_anno.center_x, source_anno.center_y, source_anno.anno_width, source_anno.anno_height]
trans_box = qtree.transform_boxes(np.array([box]))[0]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file qt-wsi-registration-0.0.12.tar.gz
.
File metadata
- Download URL: qt-wsi-registration-0.0.12.tar.gz
- Upload date:
- Size: 18.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30df8ea5034167fcd2a235bbc61977528e12370be64ecbeb43866545a1c00afb |
|
MD5 | 9848a3ccd4f35b570aa361c516c4595c |
|
BLAKE2b-256 | f48ec475f7127bd7354d4fb5b699c5b269b19ae76f666a7de9d634cb2e574db7 |
File details
Details for the file qt_wsi_registration-0.0.12-py3-none-any.whl
.
File metadata
- Download URL: qt_wsi_registration-0.0.12-py3-none-any.whl
- Upload date:
- Size: 20.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f365e287905e839d3d74407b1289eabf803c05d029760baa4de1292e88473fc8 |
|
MD5 | 0895b64c3a647772fd36d2793371b7b4 |
|
BLAKE2b-256 | c551ef76faa62aa2a6ae00fd2a4daa0689e137ed94d8dd872a4a7cad7348f195 |