Skip to main content

Robust quad-tree based registration on whole slide images

Project description

Robust quad-tree based registration on whole slide images

PyPI version fury.io MIT license

This is a library that implements a quad-tree based registration on whole slide images.

Core features

  • Whole Slide Image support
  • Robust and fast
  • Rigid and non-rigid transformation

Additional Requirements

Install OpennSlide

Notebooks

Example notebooks are in the demo folder or Collab.

Ho-To:

Import package and create Quad-Tree.

import qt_wsi_reg.registration_tree as registration

parameters = {
    # feature extractor parameters
    "point_extractor": "sift",  #orb , sift
    "maxFeatures": 512, 
    "crossCheck": False, 
    "flann": False,
    "ratio": 0.6, 
    "use_gray": False,

    # QTree parameter 
    "homography": True,
    "filter_outliner": False,
    "debug": False,
    "target_depth": 1,
    "run_async": True,
    "num_workers: 2,
    "thumbnail_size": (1024, 1024)
}

qtree = registration.RegistrationQuadTree(source_slide_path=Path("examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs"), target_slide_path="examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs", **parameters)

Show some registration debug information.

qtree.draw_feature_points(num_sub_pic=5, figsize=(10, 10))

Show annotations on the source and target image in the format:

[["center_x", "center_y", "anno_width", "anno_height"]]

annos = np.array([["center_x", "center_y", "anno_width", "anno_height"]])
qtree.draw_annotations(annos, num_sub_pic=5, figsize=(10, 10))

Transform coordinates

box = [source_anno.center_x, source_anno.center_y, source_anno.anno_width, source_anno.anno_height]

trans_box = qtree.transform_boxes(np.array([box]))[0]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qt-wsi-registration-0.0.12.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

qt_wsi_registration-0.0.12-py3-none-any.whl (20.9 kB view details)

Uploaded Python 3

File details

Details for the file qt-wsi-registration-0.0.12.tar.gz.

File metadata

  • Download URL: qt-wsi-registration-0.0.12.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for qt-wsi-registration-0.0.12.tar.gz
Algorithm Hash digest
SHA256 30df8ea5034167fcd2a235bbc61977528e12370be64ecbeb43866545a1c00afb
MD5 9848a3ccd4f35b570aa361c516c4595c
BLAKE2b-256 f48ec475f7127bd7354d4fb5b699c5b269b19ae76f666a7de9d634cb2e574db7

See more details on using hashes here.

File details

Details for the file qt_wsi_registration-0.0.12-py3-none-any.whl.

File metadata

File hashes

Hashes for qt_wsi_registration-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 f365e287905e839d3d74407b1289eabf803c05d029760baa4de1292e88473fc8
MD5 0895b64c3a647772fd36d2793371b7b4
BLAKE2b-256 c551ef76faa62aa2a6ae00fd2a4daa0689e137ed94d8dd872a4a7cad7348f195

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page