Robust quad-tree based registration on whole slide images
Project description
Robust quad-tree based registration on whole slide images
This is a library that implements a quad-tree based registration on whole slide images.
Core features
- Whole Slide Image support
- Robust and fast
- Rigid and non-rigid transformation
Additional Requirements
Notebooks
Example notebooks are in the demo folder or .
Ho-To:
Import package and create Quad-Tree.
import qt_wsi_reg.registration_tree as registration
parameters = {
# feature extractor parameters
"point_extractor": "sift", #orb , sift
"maxFeatures": 512,
"crossCheck": False,
"flann": False,
"ratio": 0.6,
"use_gray": False,
# QTree parameter
"homography": True,
"filter_outliner": False,
"debug": False,
"target_depth": 1,
"run_async": True,
"num_workers: 2,
"thumbnail_size": (1024, 1024)
}
qtree = registration.RegistrationQuadTree(source_slide_path=Path("examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs"), target_slide_path="examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs", **parameters)
Show some registration debug information.
qtree.draw_feature_points(num_sub_pic=5, figsize=(10, 10))
Show annotations on the source and target image in the format:
[["center_x", "center_y", "anno_width", "anno_height"]]
annos = np.array([["center_x", "center_y", "anno_width", "anno_height"]])
qtree.draw_annotations(annos, num_sub_pic=5, figsize=(10, 10))
Transform coordinates
box = [source_anno.center_x, source_anno.center_y, source_anno.anno_width, source_anno.anno_height]
trans_box = qtree.transform_boxes(np.array([box]))[0]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qt-wsi-registration-0.0.6.tar.gz
(11.9 kB
view details)
Built Distribution
File details
Details for the file qt-wsi-registration-0.0.6.tar.gz
.
File metadata
- Download URL: qt-wsi-registration-0.0.6.tar.gz
- Upload date:
- Size: 11.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c3023e79b4d23089d12cd87397ff5149dc82927f501456a9ab40f63772ed2c6 |
|
MD5 | 9e6f2d3af4c8e3a7f061c40968925b0d |
|
BLAKE2b-256 | f0ece56cc01040e5cca549475114425406f46c6def43e55e5d51fa73ff2e439a |
File details
Details for the file qt_wsi_registration-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: qt_wsi_registration-0.0.6-py3-none-any.whl
- Upload date:
- Size: 13.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73bb6ec07808c2eec7704004f41ba6573905af871ec07d8fe8c0f92324dde3f2 |
|
MD5 | fdaceac330ad528d33077539dd7b6da4 |
|
BLAKE2b-256 | 7fdec55b131a10dc5480720e8e3ae41e49397fabda00de645da35f1e57b33b09 |