Robust quad-tree based registration on whole slide images
Project description
Robust quad-tree based registration on whole slide images
This is a library that implements a quad-tree based registration on whole slide images.
Core features
- Whole Slide Image support
- Robust and fast
- Rigid and non-rigid transformation
Additional Requirements
Notebooks
Example notebooks are in the demo folder or .
Ho-To:
Import package and create Quad-Tree.
import qt_wsi_reg.registration_tree as registration
parameters = {
# feature extractor parameters
"point_extractor": "sift", #orb , sift
"maxFeatures": 512,
"crossCheck": False,
"flann": False,
"ratio": 0.6,
"use_gray": False,
# QTree parameter
"homography": True,
"filter_outliner": False,
"debug": False,
"target_depth": 1,
"run_async": True,
"num_workers: 2,
"thumbnail_size": (1024, 1024)
}
qtree = registration.RegistrationQuadTree(source_slide_path=Path("examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs"), target_slide_path="examples/4Scanner/Aperio/Cyto/A_BB_563476_1.svs", **parameters)
Show some registration debug information.
qtree.draw_feature_points(num_sub_pic=5, figsize=(10, 10))
Show annotations on the source and target image in the format:
[["center_x", "center_y", "anno_width", "anno_height"]]
annos = np.array([["center_x", "center_y", "anno_width", "anno_height"]])
qtree.draw_annotations(annos, num_sub_pic=5, figsize=(10, 10))
Transform coordinates
box = [source_anno.center_x, source_anno.center_y, source_anno.anno_width, source_anno.anno_height]
trans_box = qtree.transform_boxes(np.array([box]))[0]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qt-wsi-registration-0.0.9.tar.gz
(15.7 kB
view details)
Built Distribution
File details
Details for the file qt-wsi-registration-0.0.9.tar.gz
.
File metadata
- Download URL: qt-wsi-registration-0.0.9.tar.gz
- Upload date:
- Size: 15.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b088d7895b4177dec3f756311d32e81b285ce4a7c8d5672558b9bb42dbf4a146 |
|
MD5 | 300f73389265445887dae7e7befa48eb |
|
BLAKE2b-256 | 9cf231a0b39b621c8dcd7abf9a645c22ef8a9fdd00b86a12090c3820b3f44c96 |
File details
Details for the file qt_wsi_registration-0.0.9-py3-none-any.whl
.
File metadata
- Download URL: qt_wsi_registration-0.0.9-py3-none-any.whl
- Upload date:
- Size: 18.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6302092f23de15abc275f24775c2fcecc3d4210c19f3901fc1879ab213e3f2de |
|
MD5 | b0a34d33706e02214e3a45d3022ad554 |
|
BLAKE2b-256 | 17f139171b1502f44e7df8fba7d29eb844afae910f0db46f9b79d98460c445f5 |