Skip to main content

A fast quantitative investment tool kit

Project description

qteasy -- 一个基于Python的高效量化投资工具包

PyPI PyPI - Wheel Build Status Documentation Status GitHub GitHub repo size GitHub code size in bytes GitHub top language PyPI - Implementation PyPI - Python Version GitHub branch checks state GitHub commit activity GitHub issues GitHub last commit GitHub contributors PyPI - Downloads PyPI - Downloads GitHub Repo stars GitHub forks GitHub watchers GitHub followers GitHub Sponsors

QTEASY简介

  • 作者: Jackie PENG
  • email: jackie_pengzhao@163.com
  • Created: 2019, July, 16
  • Latest Version: 1.0.9
  • License: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication

QTEASY是为量化交易人员开发的一套量化交易策略开发工具包,提供了以下基本功能。

  1. 金融历史数据的获取、清洗、整理、可视化、本地存储查询及应用;支持多种数据存储方式,包括本地文件、MySQL数据库等,数据来源包括Tushare、EastMoney等
  2. 投资交易策略的创建、回测、性能评价,并且通过定义策略的可调参数,提供多种优化算法实现交易策略的参数调优
  3. 交易策略的部署、实盘运行、模拟交易结果、并跟踪记录交易日志、股票持仓、账户资金变化等信息

以下功能在开发计划中:

  1. 提供常用的金融统计数据分析工具,并整合到内间的HistoryPanel对象中
  2. 与自动化交易系统连接、实现自动化交易(开发中)

QTEASY文档

关于QTEASY系统的更多详细解释和使用方法,请参阅QTEASY文档

安装及依赖

QTEASY的安装

$ pip install qteasy

python 版本

  • python version >= 3.6

安装依赖包

这个项目依赖以下python package,有些安装包可能不能在安装qteasy的时候自动安装,此时可以手动安装:

  • pandas version >= 1.1.0 pip install pandas / conda install pandas

  • numpy version >= 1.18.1 pip install numpy / conda install numpy

  • numba version >= 0.47 pip install numba / conda install numba

  • tushare version >= 1.2.89 pip install tushare

  • mplfinance version >= 0.11 pip install mplfinance / conda install -c conda-forge mplfinance

  • rich version >= 10.0.0 pip install rich / conda install -c conda-forge rich

  • TA-lib version >= 0.4.18 TA-Lib 需要手动安装,安装方法请参考FAQ

使用qteasy需要设置本地数据源,默认使用csv文件作为本地数据源,如果选用其他数据源,需要安装相应的依赖包,详情参见qteasy使用教程

10分钟了解qteasy的功能

导入qteasy

基本的模块导入方法如下

import qteasy as qt
print(qt.__version__)

配置本地数据源

为了使用qteasy,需要大量的金融历史数据,所有的历史数据都必须首先保存在本地,如果本地没有历史数据,那么qteasy的许多功能就无法执行。

qteasy可以通过tushare金融数据包来获取大量的金融数据,用户需要自行申请API Token,获取相应的权限和积分(详情参考:https://tushare.pro/document/2)

因此,在使用qteasy之前需要对本地数据源和tushare进行必要的配置。在QT_ROOT_PATH/qteasy/路径下打开配置文件qteasy.cfg,可以看到下面内容:

# qteasy configuration file
# following configurations will be loaded when initialize qteasy

# example:
# local_data_source = database

配置tushare token

将你获得的tushare API token添加到配置文件中,如下所示:

tushare_token = <你的tushare API Token> 

配置本地数据源 —— 用MySQL数据库作为本地数据源

默认情况下qteasy使用存储在data/路径下的.csv文件作为数据源,不需要特殊设置。 如果设置使用mysql数据库作为本地数据源,在配置文件中添加以下配置:

local_data_source = database  

local_db_host = <host name>
local_db_port = <port number>
local_db_user = <user name>
local_db_password = <password>
local_db_name = <database name>

关闭并保存好配置文件后,重新导入qteasy,就完成了数据源的配置,可以开始下载数据到本地了。

下载金融历史数据

要下载金融价格数据,使用qt.refill_data_source()函数。下面的代码下载2021及2022两年内所有股票、所有指数的日K线数据,同时下载所有的股票和基金的基本信息数据。 (根据网络速度,下载数据可能需要十分钟左右的时间,如果存储为csv文件,将占用大约200MB的磁盘空间):

qt.refill_data_source(
        tables=['stock_daily',   # 股票的日线价格
                'index_daily',   # 指数的日线价格
                'basics'],       # 股票和基金的基本信息
        start_date='20210101',  # 下载数据的起止时间
        end_date='20221231',  
)

数据下载到本地后,可以使用qt.get_history_data()来获取数据,如果同时获取多个股票的历史数据,每个股票的历史数据会被分别保存到一个dict中。

qt.get_history_data(htypes='open, high, low, close', 
                    shares='000001.SZ, 000300.SH',
                    start='20210101',
                    end='20210115')

运行上述代码会得到一个Dict对象,包含两个股票"000001.SZ"以及"000005.SZ"的K线数据(数据存储为DataFrame):

{'000001.SZ':
              open   high    low  close
 2021-01-04  19.10  19.10  18.44  18.60
 2021-01-05  18.40  18.48  17.80  18.17
 2021-01-06  18.08  19.56  18.00  19.56
 ... 
 2021-01-13  21.00  21.01  20.40  20.70
 2021-01-14  20.68  20.89  19.95  20.17
 2021-01-15  21.00  21.95  20.82  21.00,
 
 '000300.SH':
                  open       high        low      close
 2021-01-04  5212.9313  5284.4343  5190.9372  5267.7181
 2021-01-05  5245.8355  5368.5049  5234.3775  5368.5049
 2021-01-06  5386.5144  5433.4694  5341.4304  5417.6677
 ...
 2021-01-13  5609.2637  5644.7195  5535.1435  5577.9711
 2021-01-14  5556.2125  5568.0179  5458.6818  5470.4563
 2021-01-15  5471.3910  5500.6348  5390.2737  5458.0812}

除了价格数据以外,qteasy还可以下载并管理包括财务报表、技术指标、基本面数据等在内的大量金融数据,详情请参见qteasy文档

股票的数据下载后,使用qt.candle()可以显示股票数据K线图。

data = qt.candle('000300.SH', start='2021-06-01', end='2021-8-01', asset_type='IDX')

png

qteasy的K线图函数candle支持通过六位数股票/指数代码查询准确的证券代码,也支持通过股票、指数名称显示K线图 qt.candle()支持功能如下:

  • 显示股票、基金、期货的K线
  • 显示复权价格
  • 显示分钟、 周或月K线
  • 显示不同移动均线以及MACD/KDJ等指标

详细的用法请参考文档,示例如下(请先使用qt.refill_data_source()下载相应的历史数据):

# 场内基金的小时K线图
qt.candle('159601', start = '20220121', freq='h')
# 沪深300指数的日K线图
qt.candle('000300', start = '20200121')
# 股票的30分钟K线,复权价格
qt.candle('中国电信', start = '20211021', freq='30min', adj='b')
# 期货K线,三条移动均线分别为9天、12天、26天
qt.candle('沪铜主力', start = '20211021', mav=[9, 12, 26])
# 场外基金净值曲线图,复权净值,不显示移动均线
qt.candle('000001.OF', start='20200101', asset_type='FD', adj='b', mav=[])

png

png

png

png

png

生成的K线图可以是一个交互式动态K线图(请注意,K线图基于matplotlib绘制,在使用不同的终端时,显示功能有所区别,某些终端并不支持 动态图表,详情请参阅 matplotlib文档

在使用动态K线图时,用户可以用鼠标和键盘控制K线图的显示范围:

  • 鼠标在图表上左右拖动:可以移动K线图显示更早或更晚的K线
  • 鼠标滚轮在图表上滚动,可以缩小或放大K线图的显示范围
  • 通过键盘左右方向键,可以移动K线图的显示范围显示更早或更晚的K线
  • 通过键盘上下键,可以缩小或放大K线图的显示范围
  • 在K线图上双击鼠标,可以切换不同的均线类型
  • 在K线图的指标区域双击,可以切换不同的指标类型:MACD,RSI,DEMA

gif

关于DataSource对象的更多详细介绍,请参见qteasy文档

创建一个投资策略

qteasy中的所有交易策略都是由qteast.Operator(交易员)对象来实现回测和运行的,Operator对象是一个策略容器,一个交易员可以同时 管理多个不同的交易策略。

queasy提供了两种方式创建交易策略,详细的说明请参见使用教程:

  • 使用内置交易策略组合
  • 通过策略类自行创建策略

生成一个DMA均线择时交易策略

在这里,我们将使用一个内置的DMA均线择时策略来生成一个最简单的大盘择时交易系统。所有内置交易策略的清单和详细说明请参见文档。

创建Operator对象时传入参数:strategies='DMA',可以新建一个DMA双均线择时交易策略。 创建好Operator对象后,可以用op.info()来查看它的信息。

import qteasy as qt

op = qt.Operator(strategies='dma')
op.info()

现在可以看到op中有一个交易策略,ID是dma,我们在Operator层面设置或修改策略的参数 时,都需要引用这个ID

DMA是一个内置的均线择时策略,它通过计算股票每日收盘价的快、慢两根移动均线的差值DMA与其移动平均值AMA之间的交叉情况来确定多空或买卖点。:

使用qt.built_ins()函数可以查看DMA策略的详情,例如:

qt.built_ins('dma')

得到:

 DMA择时策略

    策略参数:
        s, int, 短均线周期
        l, int, 长均线周期
        d, int, DMA周期
    信号类型:
        PS型:百分比买卖交易信号
    信号规则:
        在下面情况下产生买入信号:
        1, DMA在AMA上方时,多头区间,即DMA线自下而上穿越AMA线后,输出为1
        2, DMA在AMA下方时,空头区间,即DMA线自上而下穿越AMA线后,输出为0
        3, DMA与股价发生背离时的交叉信号,可信度较高

    策略属性缺省值:
    默认参数:(12, 26, 9)
    数据类型:close 收盘价,单数据输入
    采样频率:天
    窗口长度:270
    参数范围:[(10, 250), (10, 250), (8, 250)]
    策略不支持参考数据,不支持交易数据

在默认情况下,策略由三个可调参数(12,26,9), 但我们可以给出任意大于2小于250的三个整数作为策略的参数,以适应不同交易活跃度的股票、或者适应 不同的策略运行周期。

回测并评价交易策略的性能表现

queasy可以使用历史数据回测策略表现并输出图表如下: png

使用默认参数回测刚才建立的DMA策略在历史数据上的表现,可以使用op.run()

res = op.run(
        mode=1,                         # 历史回测模式
        asset_pool='000300.SH',         # 投资资产池
        asset_type='IDX',               # 投资资产类型
        invest_cash_amounts=[100000],   # 投资资金
        invest_start='20220501',        # 投资回测开始日期
        invest_end='20221231',          # 投资回测结束日期
        cost_rate_buy=0.0003,           # 买入费率
        cost_rate_sell=0.0001,          # 卖出费率
        visual=True,                    # 打印可视化回测图表
        trade_log=True                  # 打印交易日志
)

输出结果如下:

     ====================================
     |                                  |
     |       BACK TESTING RESULT        |
     |                                  |
     ====================================

qteasy running mode: 1 - History back testing
time consumption for operate signal creation: 4.4 ms
time consumption for operation back looping:  82.5 ms

investment starts on      2022-05-05 00:00:00
ends on                   2022-12-30 00:00:00
Total looped periods:     0.7 years.

-------------operation summary:------------
Only non-empty shares are displayed, call 
"loop_result["oper_count"]" for complete operation summary

          Sell Cnt Buy Cnt Total Long pct Short pct Empty pct
000300.SH    6        6      12   56.4%      0.0%     43.6%   

Total operation fee:     ¥      257.15
total investment amount: ¥  100,000.00
final value:              ¥  105,773.09
Total return:                     5.77% 
Avg Yearly return:                8.95%
Skewness:                          0.58
Kurtosis:                          3.54
Benchmark return:                -3.46% 
Benchmark Yearly return:         -5.23%

------strategy loop_results indicators------ 
alpha:                            0.142
Beta:                             1.003
Sharp ratio:                      0.637
Info ratio:                       0.132
250 day volatility:               0.138
Max drawdown:                    11.92% 
    peak / valley:        2022-08-17 / 2022-10-31
    recovered on:         Not recovered!

===========END OF REPORT=============

png

交易策略的参数调优

交易策略的表现与参数有关,如果输入不同的参数,策略回报相差会非常大。qteasy可以用多种不同的优化算法,帮助搜索最优的策略参数,

要使用策略优化功能,需要设置交易策略的优化标记opt_tag=1,并配置环境变量mode=2即可:

op.set_parameter('dma', opt_tag=1)
res = op.run(mode=2,                    # 优化模式
             opti_start='20220501',     # 优化区间开始日期
             opti_end='20221231',       # 优化区间结束日期
             test_start='20220501',     # 测试区间开始日期
             test_end='20221231',       # 测试区间结束日期
             opti_sample_count=1000,    # 优化样本数量
             visual=True,               # 打印优化结果图表
             parallel=False)            # 不使用并行计算

qteasy将在同一段历史数据(优化区间)上反复回测,找到结果最好的30组参数,并把这30组参数在另一段历史数据(测试区间)上进行独立测试,并显 示独立测试的结果:

==================================== 
|                                  |
|       OPTIMIZATION RESULT        |
|                                  |
====================================

qteasy running mode: 2 - Strategy Parameter Optimization

... # 省略部分输出

# 以下是30组优化的策略参数及其结果(部分结果省略)
    Strategy items Sell-outs Buy-ins ttl-fee     FV      ROI  Benchmark rtn MDD 
0     (35, 69, 60)     1.0      2.0    71.45 106,828.20  6.8%     -3.5%     9.5%
1   (124, 104, 18)     3.0      2.0   124.86 106,900.59  6.9%     -3.5%     7.4%
2   (126, 120, 56)     1.0      1.0    72.38 107,465.86  7.5%     -3.5%     7.5%
...
27   (103, 84, 70)     1.0      1.0    74.84 114,731.44 14.7%     -3.5%     8.8%
28  (143, 103, 49)     1.0      1.0    74.33 116,453.26 16.5%     -3.5%     4.3%
29   (129, 92, 56)     1.0      1.0    74.55 118,811.58 18.8%     -3.5%     4.3%

===========END OF REPORT=============

png
将优化后的参数应用到策略中,并再次回测,可以看到结果明显提升:

op.set_parameter('dma', pars=(143, 99, 32))
res = op.run(
        mode=1,                         # 历史回测模式
        asset_pool='000300.SH',         # 投资资产池
        asset_type='IDX',               # 投资资产类型
        invest_cash_amounts=[100000],   # 投资资金
        invest_start='20220501',        # 投资回测开始日期
        invest_end='20221231',          # 投资回测结束日期
        cost_rate_buy=0.0003,           # 买入费率
        cost_rate_sell=0.0001,          # 卖出费率
        visual=True,                    # 打印可视化回测图表
        trade_log=True                  # 打印交易日志

结果如下:

png

关于策略优化结果的更多解读、以及更多优化参数的介绍,请参见详细文档

部署并开始交易策略的实盘运行

qteasy提供了在命令行环境中运行的一个简单实盘交易程序,在配置好Operator对象并设置好策略后,自动定期运行、下载实时数据并根据策略结果生成交易指令,模拟交易过程并记录交易结果。

Operator中设置好交易策略,并配置好交易参数后,可以直接启动实盘交易:

import qteasy as qt

# 创建一个交易策略alpha
alpha = qt.get_built_in_strategy('ndayrate')  # 创建一个N日股价涨幅交易策略

# 设置策略的运行参数
alpha.strategy_run_freq = 'd'  # 每日运行
alpha.data_freq = 'd' # 策略使用日频数据
alpha.window_length = 20  # 数据窗口长度
alpha.sort_ascending = False  # 优先选择涨幅最大的股票
alpha.condition = 'greater'  # 筛选出涨幅大于某一个值的股票
alpha.ubound = 0.005  # 筛选出涨幅大于0.5%的股票
alpha.sel_count = 7  # 每次选出7支股票

# 创建一个交易员对象,运行alpha策略
op = qt.Operator(alpha, signal_type='PT', op_type='step')

# 设置策略运行参数
# 交易股票池包括所有的银行股和家用电器股
asset_pool = qt.filter_stock_codes(industry='银行, 家用电器', exchange='SSE, SZSE')

qt.configure(
        mode=0,  # 交易模式为实盘运行
        asset_type='E',  # 交易的标的类型为股票
        asset_pool=asset_pool,  # 交易股票池为所有银行股和家用电器股
        trade_batch_size=100,  # 交易批量为100股的整数倍
        sell_batch_size=1,  # 卖出数量为1股的整数倍
        live_trade_account_id=1,  # 实盘交易账户ID
        live_trade_account='user name',  # 实盘交易用户名
)

qt.run(op)

此时qteasy会启动一个Trader Shell命令行界面,同时交易策略会自动定时运行,运行的参数随QT_CONFIG而定。启动TraderShell后,所有交易相关的重要信息都会显示在console中:

png

此时控制台上会显示当前交易执行状态:

  • 当前日期、时间、运行状态
  • 产生的交易信号和交易订单
  • 交易订单的成交情况
  • 账户资金变动情况
  • 账户持仓变动情况
  • 开盘和收盘时间预告等

TraderShell运行过程中可以随时按Ctrl+C进入Shell选单:

Current mode interrupted, Input 1 or 2 or 3 for below options: 
[1], Enter command mode; 
[2], Enter dashboard mode. 
[3], Exit and stop the trader; 
please input your choice: 

此时按1可以进入Interactive模式(交互模式)。在交互模式下,用户可以在(QTEASY)命令行提示符后输入 命令来控制交易策略的运行:

png

在命令行模式下可以与TraderShell实现交互,操作当前账户,查询交易历史、修改状态等:

  • pause / resume: 暂停/重新启动交易策略
  • change: 修改当前持仓和现金余额
  • positions: 查看当前持仓
  • orders: 查看当前订单
  • history: 查看历史交易记录
  • exit: 退出TraderShell
  • ... 更多TraderShell命令参见QTEASY文档

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qteasy-1.0.9.tar.gz (562.5 kB view details)

Uploaded Source

Built Distribution

qteasy-1.0.9-py3-none-any.whl (434.6 kB view details)

Uploaded Python 3

File details

Details for the file qteasy-1.0.9.tar.gz.

File metadata

  • Download URL: qteasy-1.0.9.tar.gz
  • Upload date:
  • Size: 562.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.0

File hashes

Hashes for qteasy-1.0.9.tar.gz
Algorithm Hash digest
SHA256 26c87a4aff9a5ca4008d19caaed5936ef5a5b5cc013dcf0c4987f49c18b6aa75
MD5 4386da90671315baf4d9ccec7c170aa4
BLAKE2b-256 cf9b53e226b9e102629c83026d21312d322ccb09bec028a7a5a7fdb982520f00

See more details on using hashes here.

Provenance

File details

Details for the file qteasy-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: qteasy-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 434.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.0

File hashes

Hashes for qteasy-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 4e57641765ca1cbb3cce7023bfacae8638eeff4ccc4e33d8a8c6b5c0aeddcad5
MD5 f4994afea9d71b3bd99b98ee0aab6edf
BLAKE2b-256 b55dc5cb5c4f434ccedd8ff34404b5af40f28387042b8ef5f7bea493a190c3b6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page