Skip to main content

A QuantLib Python ToolKit

Project description

# Quant Python ToolKit

This package is intended to be a layer above QuantLib Python and a few other quantitative libraries
to be more accessible for quantitative finance calculations.

## Minimal Example
Here is a minimal example for valuing a bond using a provided zero rates.

from qtk import Controller, Field as F, Template as T

data = [{
'Compounding': 'Compounded',
'CompoundingFrequency': 'Annual',
'Currency': 'USD',
'DiscountBasis': '30/360',
'DiscountCalendar': 'UnitedStates',
'ListOfDate': ['1/15/2015', '7/15/2015', '1/15/2016'],
'ListOfZeroRate': [0.0, 0.005, 0.007],
'ObjectId': 'USD.Zero.Curve',
'Template': 'TermStructure.Yield.ZeroCurve'},
{
'DiscountCurve': '->USD.Zero.Curve',
'ObjectId': 'BondEngine',
'Template': 'Engine.Bond.Discounting'},
{
'AccrualCalendar': 'UnitedStates',
'AccrualDayConvention': 'Unadjusted',
'AsOfDate': '2016-01-15',
'Coupon': 0.06,
'CouponFrequency': 'Semiannual',
'Currency': 'USD',
'DateGeneration': 'Backward',
'EndOfMonth': False,
'IssueDate': '2015-01-15',
'MaturityDate': '2016-01-15',
'ObjectId': 'USD.TBond',
'PaymentBasis': '30/360',
'PricingEngine': '->BondEngine',
'Template': 'Instrument.Bond.TreasuryBond'}]

res = Controller(data)
asof_date = "1/15/2015"

ret = res.process(asof_date)
tbond = res.object("USD.TBond")
print tbond.NPV()


The basic idea here is that once you have the data prepared, the `Controller` can be invoked to do the calculations.
A few points that are worth noting here.

- All the data is textual and rather intuitive. For instance, the coupon
frequency is just stated as `Annual` or `Semiannual`. The same is true for a lot of other fields. For dates,
the `dateutil` package is used to parse and covers a wide variety of formats.

- The `data` is essentially a `list` of `dict` with each `dict` corresponding to a specific `object` as determined
by the value to the key `Template` in each `dict`. Each `object` here has a name as specified by the value of the
key `ObjectId`

- One of the values can refer to another object described by a `dict` by using the `reference` syntax. For instance,
the first `dict` in the `data` list (with `ObjectId` given as *USD.Zero.Curve* ) variable refers to an interest
rate term structure of zero rates. The next object is a discounting bond engine, and require an yield curve as
input for the discount curve. Here the yield curve is refered by using the prefix `->` along with the name of the
object we are referring to.

- Here, the `Controller` parses the data, and figures out the dependency and processes the object in the correct order
and fulfills the dependencies behind the scenes.

## Introspection

There are a few convenience methods that provide help on how to construct the data packet. For example,
the `help` method in the template prints out the summary and list of fields on how to construct
the data packet for the template.

> T.TS_YIELD_BOND.help()

**Description**

A template for creating yield curve by stripping bond quotes.

**Required Fields**

- `Template` [*Template*]: 'TermStructure.Yield.BondCurve'
- `InstrumentCollection` [*List*]: Collection of instruments
- `AsOfDate` [*Date*]: Reference date or as of date
- `Country` [*String*]: Country
- `Currency` [*String*]: Currency

**Optional Fields**

- `ObjectId` [*String*]: A unique name or identifier to refer to this dictionary data
- `InterpolationMethod` [*String*]: The interpolation method can be one of the following choices: LinearZero, CubicZero, FlatForward, LinearForward,LogCubicDiscount.
- `DiscountBasis` [*DayCount*]: Discount Basis
- `SettlementDays` [*Integer*]: Settlement days
- `DiscountCalendar` [*Calendar*]: Discount Calendar

The `help` method prints the description in `info` method in Markdown format. While using IPython/Jupyter notebooks, the description
prints in a nice looking format. One can start with a sample data packet to fill out the input fields using the `sample_data` method.

> T.TS_YIELD_BOND.sample_data()

{'AsOfDate': 'Required (Date)',
'Country': 'Required (String)',
'Currency': 'Required (String)',
'DiscountBasis': 'Optional (DayCount)',
'DiscountCalendar': 'Optional (Calendar)',
'InstrumentCollection': 'Required (List)',
'InterpolationMethod': 'Optional (String)',
'ObjectId': 'Optional (String)',
'SettlementDays': 'Optional (Integer)',
'Template': 'TermStructure.Yield.BondCurve'}


## Installation

You can install qtk using `pip` or `easy_install`

pip install qtk

or

easy_install qtk

`qtk` has a dependency on `QuantLib-Python` which needs to be installed as well.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qtk-0.1.3.zip (45.8 kB view details)

Uploaded Source

File details

Details for the file qtk-0.1.3.zip.

File metadata

  • Download URL: qtk-0.1.3.zip
  • Upload date:
  • Size: 45.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for qtk-0.1.3.zip
Algorithm Hash digest
SHA256 d421f221deee857e02bb0aaadc97b18abe5e93f4599768df72b1def30df131f1
MD5 7374cfb47f3737deb2681aea42f493da
BLAKE2b-256 5f01652686261a836fb0a05b9b05398dfa5a09a523392b494ba0ca00c86f0fed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page