Skip to main content

The last GPL version of quadpy; published as is

Project description

quadpy

Your one-stop shop for numerical integration in Python.

PyPi Version PyPI pyversions DOI GitHub stars PyPi downloads

Discord awesome

gh-actions codecov LGTM Code style: black

More than 1500 numerical integration schemes for line segments, circles, disks, triangles, quadrilaterals, spheres, balls, tetrahedra, hexahedra, wedges, pyramids, n-spheres, n-balls, n-cubes, n-simplices, the 1D half-space with weight functions exp(-r), the 2D space with weight functions exp(-r), the 3D space with weight functions exp(-r), the nD space with weight functions exp(-r), the 1D space with weight functions exp(-r2), the 2D space with weight functions exp(-r2), the 3D space with weight functions exp(-r2), and the nD space with weight functions exp(-r2), for fast integration of real-, complex-, and vector-valued functions.

For example, to numerically integrate any function over any given interval, install quadpy from the Python Package Index with

pip install quadpy

and do

import numpy as np
import quadpy


def f(x):
    return np.sin(x) - x


val, err = quadpy.quad(f, 0.0, 6.0)

This is like scipy with the addition that quadpy handles complex-, vector-, matrix-valued integrands, and "intervals" in spaces of arbitrary dimension.

To integrate over a triangle, do

import numpy as np
import quadpy


def f(x):
    return np.sin(x[0]) * np.sin(x[1])


triangle = np.array([[0.0, 0.0], [1.0, 0.0], [0.7, 0.5]])

# get a "good" scheme of degree 10
scheme = quadpy.t2.get_good_scheme(10)
val = scheme.integrate(f, triangle)

Most domains have get_good_scheme(degree). If you would like to use a particular scheme, you can pick one from the dictionary quadpy.t2.schemes.

All schemes have

scheme.points
scheme.weights
scheme.degree
scheme.source
scheme.test_tolerance

scheme.show()
scheme.integrate(
    # ...
)

and many have

scheme.points_symbolic
scheme.weights_symbolic

quadpy is fully vectorized, so if you like to compute the integral of a function on many domains at once, you can provide them all in one integrate() call, e.g.,

# shape (3, 5, 2), i.e., (corners, num_triangles, xy_coords)
triangles = np.stack(
    [
        [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]],
        [[1.2, 0.6], [1.3, 0.7], [1.4, 0.8]],
        [[26.0, 31.0], [24.0, 27.0], [33.0, 28]],
        [[0.1, 0.3], [0.4, 0.4], [0.7, 0.1]],
        [[8.6, 6.0], [9.4, 5.6], [7.5, 7.4]],
    ],
    axis=-2,
)

The same goes for functions with vectorized output, e.g.,

def f(x):
    return [np.sin(x[0]), np.sin(x[1])]

More examples under test/examples_test.py.

Read more about the dimensionality of the input/output arrays in the wiki.

Advanced topics:

Schemes

Line segment (C1)

See here for how to generate Gauss formulas for your own weight functions.

Example:

import numpy as np
import quadpy

scheme = quadpy.c1.gauss_patterson(5)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x), [0.0, 1.0])

1D half-space with weight function exp(-r) (E1r)

Example:

import quadpy

scheme = quadpy.e1r.gauss_laguerre(5, alpha=0)
scheme.show()
val = scheme.integrate(lambda x: x ** 2)

1D space with weight function exp(-r2) (E1r2)

Example:

import quadpy

scheme = quadpy.e1r2.gauss_hermite(5)
scheme.show()
val = scheme.integrate(lambda x: x ** 2)

Circle (U2)

  • Krylov (1959, arbitrary degree)

Example:

import numpy as np
import quadpy

scheme = quadpy.u2.get_good_scheme(7)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0], 1.0)

Triangle (T2)

Apart from the classical centroid, vertex, and seven-point schemes we have

Example:

import numpy as np
import quadpy

scheme = quadpy.t2.get_good_scheme(12)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [[0.0, 0.0], [1.0, 0.0], [0.5, 0.7]])

Disk (S2)

Example:

import numpy as np
import quadpy

scheme = quadpy.s2.get_good_scheme(6)
scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0], 1.0)

Quadrilateral (C2)

Example:

import numpy as np
import quadpy

scheme = quadpy.c2.get_good_scheme(7)
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [[[0.0, 0.0], [1.0, 0.0]], [[0.0, 1.0], [1.0, 1.0]]],
)

The points are specified in an array of shape (2, 2, ...) such that arr[0][0] is the lower left corner, arr[1][1] the upper right. If your c2 has its sides aligned with the coordinate axes, you can use the convenience function

quadpy.c2.rectangle_points([x0, x1], [y0, y1])

to generate the array.

2D space with weight function exp(-r) (E2r)

Example:

import quadpy

scheme = quadpy.e2r.get_good_scheme(5)
scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

2D space with weight function exp(-r2) (E2r2)

Example:

import quadpy

scheme = quadpy.e2r2.get_good_scheme(3)
scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

Sphere (U3)

Example:

import numpy as np
import quadpy

scheme = quadpy.u3.get_good_scheme(19)
# scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0, 0.0], 1.0)

Integration on the sphere can also be done for functions defined in spherical coordinates:

import numpy as np
import quadpy


def f(theta_phi):
    theta, phi = theta_phi
    return np.sin(phi) ** 2 * np.sin(theta)


scheme = quadpy.u3.get_good_scheme(19)
val = scheme.integrate_spherical(f)

Ball (S3)

Example:

import numpy as np
import quadpy

scheme = quadpy.s3.get_good_scheme(4)
# scheme.show()
val = scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0, 0.0], 1.0)

Tetrahedron (T3)

Example:

import numpy as np
import quadpy

scheme = quadpy.t3.get_good_scheme(5)
# scheme.show()
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.5, 0.7, 0.0], [0.3, 0.9, 1.0]],
)

Hexahedron (C3)

Example:

import numpy as np
import quadpy

scheme = quadpy.c3.product(quadpy.c1.newton_cotes_closed(3))
# scheme.show()
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    quadpy.c3.cube_points([0.0, 1.0], [-0.3, 0.4], [1.0, 2.1]),
)

Pyramid (P3)

  • Felippa (2004, 9 schemes up to degree 5)

Example:

import numpy as np
import quadpy

scheme = quadpy.p3.felippa_5()

val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [
        [0.0, 0.0, 0.0],
        [1.0, 0.0, 0.0],
        [0.5, 0.7, 0.0],
        [0.3, 0.9, 0.0],
        [0.0, 0.1, 1.0],
    ],
)

Wedge (W3)

Example:

import numpy as np
import quadpy

scheme = quadpy.w3.felippa_3()
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    [
        [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.5, 0.7, 0.0]],
        [[0.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.5, 0.7, 1.0]],
    ],
)

3D space with weight function exp(-r) (E3r)

Example:

import quadpy

scheme = quadpy.e3r.get_good_scheme(5)
# scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

3D space with weight function exp(-r2) (E3r2)

Example:

import quadpy

scheme = quadpy.e3r2.get_good_scheme(6)
# scheme.show()
val = scheme.integrate(lambda x: x[0] ** 2)

n-Simplex (Tn)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.tn.grundmann_moeller(dim, 3)
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    np.array(
        [
            [0.0, 0.0, 0.0, 0.0],
            [1.0, 2.0, 0.0, 0.0],
            [0.0, 1.0, 0.0, 0.0],
            [0.0, 3.0, 1.0, 0.0],
            [0.0, 0.0, 4.0, 1.0],
        ]
    ),
)

n-Sphere (Un)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.un.dobrodeev_1978(dim)
val = scheme.integrate(lambda x: np.exp(x[0]), np.zeros(dim), 1.0)

n-Ball (Sn)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.sn.dobrodeev_1970(dim)
val = scheme.integrate(lambda x: np.exp(x[0]), np.zeros(dim), 1.0)

n-Cube (Cn)

Example:

import numpy as np
import quadpy

dim = 4
scheme = quadpy.cn.stroud_cn_3_3(dim)
val = scheme.integrate(
    lambda x: np.exp(x[0]),
    quadpy.cn.ncube_points([0.0, 1.0], [0.1, 0.9], [-1.0, 1.0], [-1.0, -0.5]),
)

nD space with weight function exp(-r) (Enr)

Example:

import quadpy

dim = 4
scheme = quadpy.enr.stroud_enr_5_4(dim)
val = scheme.integrate(lambda x: x[0] ** 2)

nD space with weight function exp(-r2) (Enr2)

Example:

import quadpy

dim = 4
scheme = quadpy.enr2.stroud_enr2_5_2(dim)
val = scheme.integrate(lambda x: x[0] ** 2)

Installation

quadpy is available from the Python Package Index, so with

pip install quadpy

you can install.

Testing

To run the tests, check out this repository and type

MPLBACKEND=Agg pytest

License

This software is published under the GPLv3 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quadpy-gpl-0.16.10.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

quadpy_gpl-0.16.10-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file quadpy-gpl-0.16.10.tar.gz.

File metadata

  • Download URL: quadpy-gpl-0.16.10.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for quadpy-gpl-0.16.10.tar.gz
Algorithm Hash digest
SHA256 0aec6ca06dd863f8d821909c6cf639154745525284c6b1bfc2f6239ac6eba8ac
MD5 9ebb8ba8622eb890e3d1bc21f35f92e6
BLAKE2b-256 394f2a59eadf0db5fb8dc0de42e8e5148d3e0b2588c42c2c707324372302c5b2

See more details on using hashes here.

File details

Details for the file quadpy_gpl-0.16.10-py3-none-any.whl.

File metadata

File hashes

Hashes for quadpy_gpl-0.16.10-py3-none-any.whl
Algorithm Hash digest
SHA256 9eca0110b07edd1faf43be4793b075e5d0f25aa4cf7cf75988b0e8778178df6e
MD5 b9161a30076a9636fb6ffec238edce80
BLAKE2b-256 ccd6b94517da4a2ab1dc8d5f2f47a77797708a581fc729fef840b0609dfa2934

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page