Skip to main content

Forest backend for Qiskit: run Qiskit code on Rigetti quantum computers or simulators

Project description

Forest backend for Qiskit

Allows running Qiskit code on Rigetti simulators and quantum computers by changing only two lines of your Qiskit code.

More goodies at https://quantastica.com

Install

pip install quantastica-qiskit-forest

Usage

Import ForestBackend into your Qiskit code:

from quantastica.qiskit_forest import ForestBackend

And replace Aer.get_backend with ForestBackend.get_backend.

Example

from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute, Aer

# Import ForestBackend:
from quantastica.qiskit_forest import ForestBackend

qc = QuantumCircuit()

q = QuantumRegister(2, "q")
c = ClassicalRegister(2, "c")

qc.add_register(q)
qc.add_register(c)

qc.h(q[0])
qc.cx(q[0], q[1])

qc.measure(q[0], c[0])
qc.measure(q[1], c[1])


# Instead:
#backend = Aer.get_backend("qasm_simulator")

# Use:
backend = ForestBackend.get_backend("qasm_simulator")

# OR:
# backend = ForestBackend.get_backend("statevector_simulator")
# backend = ForestBackend.get_backend("Aspen-7-28Q-A")
# backend = ForestBackend.get_backend("Aspen-7-28Q-A", as_qvm=True)
# ...

# To speed things up a little bit qiskit's optimization can be disabled
# by setting optimization_level to 0 like following:
# job = execute(qc, backend=backend, optimization_level=0)
job = execute(qc, backend=backend)
job_result = job.result()

print(job_result.get_counts(qc))

Prerequisites

Running on your local Rigetti simulator

You need to install Rigetti Forest SDK and make sure that quilc compiler and qvm simulator are running:

Open new terminal and run:

quilc -S

And in one more new terminal run:

qvm -S -c

Running on Rigetti quantum computer

  • You need to get access to Rigetti Quantum Cloud Services (QCS)

  • In your Quantum Machine Image (QMI) install this package and Qiskit

  • Reserve a QPU lattice

  • Run your code via QMI terminal or Jupyter notebook served by your QMI

Details

Syntax

ForestBackend.get_backend(backend_name = None, as_qvm = False)

Arguments

backend_name can be:

  • any valid Rigetti lattice name

OR:

  • qasm_simulator will be sent to QVM as Nq-qvm (where N is number of qubits in the circuit)

  • statevector_simulator will be executed as WavefunctionSimulator.wavefunction()

If backend name is not provided then it will act as qasm_simulator

as_qvm boolean:

  • False (default)

  • True: if backend_name is QPU lattice name, then code will execute on QVM which will mimic QPU

That's it. Enjoy! :)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantastica-qiskit-forest-0.9.21.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

quantastica_qiskit_forest-0.9.21-py3-none-any.whl (15.6 kB view details)

Uploaded Python 3

File details

Details for the file quantastica-qiskit-forest-0.9.21.tar.gz.

File metadata

File hashes

Hashes for quantastica-qiskit-forest-0.9.21.tar.gz
Algorithm Hash digest
SHA256 240af1f9cb03e34e538e4f02de16b021d397d71483f38cab3cadecd6e697560f
MD5 51b58cd35228b0915c861667026d77b2
BLAKE2b-256 3285a941cb825027c44313e33ba19ef41d031035094137da9c0352ba14d30301

See more details on using hashes here.

File details

Details for the file quantastica_qiskit_forest-0.9.21-py3-none-any.whl.

File metadata

File hashes

Hashes for quantastica_qiskit_forest-0.9.21-py3-none-any.whl
Algorithm Hash digest
SHA256 a5509395da62ef8ffe593b7ec46f7e4408344665babe5d8407e2757a2f733435
MD5 8f92598208d9af0595ccb90ec21c0fc4
BLAKE2b-256 6d062b1af743c0206b202b00239dd1892819568caf3f624fda9d84123fe46274

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page