This backtesting is used to backtest algorithmic/quant trading strategies.
Project description
Access
Repository (GitLab): https://gitlab.com/fsbc/theses/quantbacktest PyPI: https://pypi.org/project/quantbacktest/
Master's thesis: https://ssrn.com/abstract=3620154
Setup
Install the project via the shell: pip install quantbacktest
.
Update to a newer version via the shell (do this twice!): pip install quantbacktest --upgrade
.
Exemplary usage
from quantbacktest import backtest_visualizer
# Importing modules from this repository
import sys
# For managing dates
from datetime import datetime
# For allowing for flexible time differences (frequencies)
from pandas.tseries.offsets import Timedelta
display_options = {
'boolean_plot_heatmap': False,
'boolean_test': False, # If multi-asset strategy is used, this will cause sampling of the signals to speed up the run for testing during development.
'warning_no_price_for_last_day': False,
'warning_no_price_during_execution': False,
'warning_no_price_for_intermediate_valuation': True,
'warning_alternative_date': False,
'warning_calculate_daily_returns_alternative_date': False,
'warning_no_price_for_calculate_daily_returns': False,
'warning_buy_order_could_not_be_filled': True,
'warning_sell_order_could_not_be_filled': True,
'errors_on_benchmark_gap': True,
'boolean_plot_equity_curve': False,
'boolean_save_equity_curve_to_disk': True,
'string_results_directory': '/home/janspoerer/code/janspoerer/tmp/results'
}
general_settings = {
'rounding_decimal_places': 4,
'rounding_decimal_places_for_security_quantities': 0,
}
excel_worksheet_name = 'weights'
strategy_hyperparameters = {
'maximum_deviation_in_days': 300,
'prices_table_id_column_name': 'token_itin',
'excel_worksheet_name': excel_worksheet_name, # Set this to None if CSV is used!
# For OpenMetrics: 9.8
'buy_parameter_space': [9.8], # [11, 20] # Times 10! Will be divided by 10.
# For OpenMetrics: 9.7
'sell_parameter_space': [9.7], # [5, 9] # Times 10! Will be divided by 10.
'maximum_relative_exposure_per_buy': 0.34,
'frequency': Timedelta(days=1),
'moving_average_window_in_days': 14,
'id': 'TP3B-248N-Q',
'boolean_allow_partially_filled_orders': True,
'string_file_path_with_signal_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/strategy_tables/test.csv'
}
constraints = {
'maximum_individual_asset_exposure_all': 1.0, # Not yet implemented
'maximum_individual_asset_exposure_individual': {}, # Not yet implemented
'maximum_gross_exposure': 1.0, # Already implemented
'boolean_allow_shortselling': False, # Shortselling not yet implemented
'minimum_cash': 100,
}
comments = {
'display_options': repr(display_options),
'strategy_hyperparameters': repr(strategy_hyperparameters)
}
backtest_visualizer(
file_path_with_price_data='/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
# ONLY LEAVE THIS LINE UNCOMMENTED IF YOU WANT TO USE ETH-ADDRESSES AS ASSET IDENTIFIERS!
# file_path_with_token_data='raw_itsa_data/20190717_itsa_tokenbase_top600_wtd301_token.csv', # Only for multi-asset strategies.
name_of_foreign_key_in_price_data_table='token_itin',
name_of_foreign_key_in_token_metadata_table='token_itin',
# 1: execute_strategy_white_noise()
# 2: Not used anymore, can be reassigned
# 3: execute_strategy_multi_asset() -> Uses strategy table
# 4: execute_strategy_ma_crossover()
int_chosen_strategy=4,
dict_crypto_options={
'general': {
'percentage_buying_fees_and_spread': 0.005, # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
'percentage_selling_fees_and_spread': 0.005, # 0.26% is the taker fee for low-volume clients at kraken.com https://www.kraken.com/features/fee-schedule
# Additional fees may apply for depositing money.
'absolute_fee_buy_order': 0.0,
'absolute_fee_sell_order': 0.0,
}
},
float_budget_in_usd=1000000.00,
strategy_hyperparameters=strategy_hyperparameters,
margin_loan_rate=0.05,
list_times_of_split_for_robustness_test=[
[datetime(2014, 1, 1), datetime(2019, 5, 30)]
],
benchmark_data_specifications={
'name_of_column_with_benchmark_primary_key': 'id', # Will be id after processing. Columns will be renamed.
'benchmark_key': 'TP3B-248N-Q', # Ether: T22F-QJGB-N, Bitcoin: TP3B-248N-Q
'file_path_with_benchmark_data': '/home/janspoerer/code/janspoerer/quantbacktest/quantbacktest/assets/raw_itsa_data/20190717_itsa_tokenbase_top600_wtd302_token_daily.csv',
'risk_free_rate': 0.02
},
display_options=display_options,
constraints=constraints,
general_settings=general_settings,
comments=comments,
)
Information for maintainers/contributors
To make changes available in GitLab and as a pip install
, please first push your changes to a new branch to GitLab and merge them.
- Update the version number in
VERSION
. - Build wheel:
python setup.py sdist bdist_wheel
. - Upload to PyPI:
twine upload --skip-existing dist/*.*
- Get the current version on your machine:
pip install quantbacktest --upgrade
Maintainers can also refer to this great guide: https://realpython.com/pypi-publish-python-package/#versioning-your-package
Further reference to quant trading in general
Quantopian offers state-of-the art backtesting for quantitative trading strategies for equity markets. Their YouTube channel hosts some excellent, generally applicable talks from renowned experts:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file quantbacktest-0.0.33.tar.gz
.
File metadata
- Download URL: quantbacktest-0.0.33.tar.gz
- Upload date:
- Size: 18.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f8d3f56b42164c019335562ea78d737f0828513949ebd4a0cda74103c22d0307
|
|
MD5 |
9e7c0760b54e340cee2149f7eccbc56c
|
|
BLAKE2b-256 |
fd5b6b0929f89c348311ef3af9bbd29b8bbab0489546ba8ddb89669e021d8f8d
|
File details
Details for the file quantbacktest-0.0.33-py3-none-any.whl
.
File metadata
- Download URL: quantbacktest-0.0.33-py3-none-any.whl
- Upload date:
- Size: 19.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200604 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
aa80fd998c63531bbbe06636a10e7952a79bed5ef7095c9f9d496db8c58284fa
|
|
MD5 |
8a8ac2e59e1491b09ef7da31837c1d62
|
|
BLAKE2b-256 |
1d029e91b2a83ab0285e3dfca330abae8e6a265b4c3521f2a65bb8e25f51171a
|