Skip to main content

Visualization tool that makes it easier to get scatter plots right.

Project description

quantile_scatter

下の方に日本語の説明があります

Overview

  • Visualization tool that makes it easier to get scatter plots right.
  • The number of uniform data is divided into intervals on the x-axis, and the quantile points for each interval are displayed.

Usage

import quantile_scatter

# dummy data
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# plot [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# x-list
	y = y_ls,	# y-list
	min_bin_ratio = 1/20,	# Ratio of the smallest group (the number of records in the smallest group as a percentage of the total)
	ile_ls = [0.25, 0.5, 0.75]
)

Advanced Usage

  • Option argument of quantile_scatter.plot() function:
mean = True   # Also draw the "mean"
show = False  # Do not show the graph and only return the data to be displayed (useful for saving the graph or drawing with something other than matplotlib)
missing_values = [None]	# The specification that x contains a missing value of "None". Internally, the value is included in the statistics as "missing".

概要

  • 散布図を正しく把握しやすくする可視化ツール
  • 均一データ数の横軸区間に分け、各区間の分位点を表示する
  • 説明は執筆中です

使用例

import quantile_scatter

# ダミーデータ
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# 分位点散布図の描画 [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# 横軸数値リスト
	y = y_ls,	# 縦軸数値リスト
	min_bin_ratio = 1/20,	# 最小グループ割合 (最も小さいグループのレコード数が全体に占める割合)
	ile_ls = [0.25, 0.5, 0.75]	# どこの分位点を出すか
)

発展的な利用方法

quantile_scatter.plot()関数のoption引数

mean = True	# 「平均」も描画する
show = False	# グラフ表示せず、表示対象データのみを返却 (グラフを保存したい場合や、matplotlib以外で描画したい場合などに有効)
missing_values = [None]	# xにNoneという欠損値が含まれるという指定。内部的には"missing"という値として集計に含められる。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantile-scatter-0.3.4.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

quantile_scatter-0.3.4-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file quantile-scatter-0.3.4.tar.gz.

File metadata

  • Download URL: quantile-scatter-0.3.4.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.27.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.6.8

File hashes

Hashes for quantile-scatter-0.3.4.tar.gz
Algorithm Hash digest
SHA256 b15ab32e09985f37581feb3c6a62f9900008cd9732197d878de622cdb3879be7
MD5 638cd884cf443b39945a599d49821e35
BLAKE2b-256 548d6e48b1cca0b8caafa3923b6c2c1995a66e565622253bc8ea08882ab36486

See more details on using hashes here.

File details

Details for the file quantile_scatter-0.3.4-py3-none-any.whl.

File metadata

  • Download URL: quantile_scatter-0.3.4-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.27.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.6.8

File hashes

Hashes for quantile_scatter-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 04d4b1a4fbb18406db725946dab27edc256ab1c57e82c685416bfcec76544fe4
MD5 ed1c1cafca66c7be73423f1329c213b1
BLAKE2b-256 f73958e542eff490d8909f9133e66b1a01240ffea57eb42d3e4167ef6d42cf83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page