Skip to main content

Visualization tool that makes it easier to get scatter plots right.

Project description

quantile_scatter

下の方に日本語の説明があります

Overview

  • Visualization tool that makes it easier to get scatter plots right.
  • The number of uniform data is divided into intervals on the x-axis, and the quantile points for each interval are displayed.

Usage

import quantile_scatter

# dummy data
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# plot [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# x-list
	y = y_ls,	# y-list
	group_n = 20,	# divide group number
	ile_ls = [0.25, 0.5, 0.75]
)

Advanced Usage

  • Option argument of quantile_scatter.plot() function:
mean = True   # Also draw the "mean"
show = False  # Do not show the graph and only return the data to be displayed (useful for saving the graph or drawing with something other than matplotlib)

概要

  • 散布図を正しく把握しやすくする可視化ツール
  • 均一データ数の横軸区間に分け、各区間の分位点を表示する
  • 説明は執筆中です

使用例

import quantile_scatter

# ダミーデータ
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# 分位点散布図の描画 [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# 横軸数値リスト
	y = y_ls,	# 縦軸数値リスト
	group_n = 20,	# 分割グループ数
	ile_ls = [0.25, 0.5, 0.75]	# どこの分位点を出すか
)

発展的な利用方法

quantile_scatter.plot()関数のoption引数

mean = True	# 「平均」も描画する
show = False	# グラフ表示せず、表示対象データのみを返却 (グラフを保存したい場合や、matplotlib以外で描画したい場合などに有効)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantile-scatter-0.1.0.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

quantile_scatter-0.1.0-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file quantile-scatter-0.1.0.tar.gz.

File metadata

  • Download URL: quantile-scatter-0.1.0.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for quantile-scatter-0.1.0.tar.gz
Algorithm Hash digest
SHA256 591ac709b38187541f3c8aa714e8abd66bbe78fed6fd3b2930ddaca07081cb70
MD5 7849651c8cbe6254dfbc1ee2594a345c
BLAKE2b-256 0a93186c21be5d283ccaa5e904f512b221b7e50f9a0280ad421ff8d695162add

See more details on using hashes here.

File details

Details for the file quantile_scatter-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: quantile_scatter-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 4.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for quantile_scatter-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3f032e1b69f6ebb0ce26483e90a92d80967e57cdfa410f2c5da968dabe10f1dd
MD5 f47ff9e5eba0a5fe4e250e220d6d48da
BLAKE2b-256 4135f080040333dad2136e0ca609dbfcafd82adc7a4ecf13fa8fc1f933e06a18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page