Skip to main content

Visualization tool that makes it easier to get scatter plots right.

Project description

quantile_scatter

下の方に日本語の説明があります

Overview

  • Visualization tool that makes it easier to get scatter plots right.
  • The number of uniform data is divided into intervals on the x-axis, and the quantile points for each interval are displayed.

Usage

import quantile_scatter

# dummy data
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# plot [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# x-list
	y = y_ls,	# y-list
	group_n = 20,	# divide group number
	ile_ls = [0.25, 0.5, 0.75]
)

Advanced Usage

  • Option argument of quantile_scatter.plot() function:
mean = True   # Also draw the "mean"
show = False  # Do not show the graph and only return the data to be displayed (useful for saving the graph or drawing with something other than matplotlib)

概要

  • 散布図を正しく把握しやすくする可視化ツール
  • 均一データ数の横軸区間に分け、各区間の分位点を表示する
  • 説明は執筆中です

使用例

import quantile_scatter

# ダミーデータ
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# 分位点散布図の描画 [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# 横軸数値リスト
	y = y_ls,	# 縦軸数値リスト
	group_n = 20,	# 分割グループ数
	ile_ls = [0.25, 0.5, 0.75]	# どこの分位点を出すか
)

発展的な利用方法

quantile_scatter.plot()関数のoption引数

mean = True	# 「平均」も描画する
show = False	# グラフ表示せず、表示対象データのみを返却 (グラフを保存したい場合や、matplotlib以外で描画したい場合などに有効)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantile-scatter-0.2.0.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

quantile_scatter-0.2.0-py3-none-any.whl (5.1 kB view details)

Uploaded Python 3

File details

Details for the file quantile-scatter-0.2.0.tar.gz.

File metadata

  • Download URL: quantile-scatter-0.2.0.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for quantile-scatter-0.2.0.tar.gz
Algorithm Hash digest
SHA256 8174baa81f8206296d9cdee20b11c6db05a8d26fcfc7ae124833655410a70f0e
MD5 9c7a8c4f64e3cd3ee5f524377abc615b
BLAKE2b-256 9a89bf8933d626e5b200181427ae27698b4e02bc4525f5d50e19326bcf7c720b

See more details on using hashes here.

File details

Details for the file quantile_scatter-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: quantile_scatter-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 5.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for quantile_scatter-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 588b3c181d0013eac86ecb72526bb5a68cfb71db6527083ec4e35d325758b8df
MD5 45e962626a81287daae0a01946b7273c
BLAKE2b-256 177c5fbdf555cf727c49da252506130bf64d80aecdc94b2ca682bbb2b74109ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page