Skip to main content

Visualization tool that makes it easier to get scatter plots right.

Project description

quantile_scatter

下の方に日本語の説明があります

Overview

  • Visualization tool that makes it easier to get scatter plots right.
  • The number of uniform data is divided into intervals on the x-axis, and the quantile points for each interval are displayed.

Usage

import quantile_scatter

# dummy data
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# plot [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# x-list
	y = y_ls,	# y-list
	min_bin_ratio = 1/20,	# Ratio of the smallest group (the number of records in the smallest group as a percentage of the total)
	ile_ls = [0.25, 0.5, 0.75]
)

Advanced Usage

  • Option argument of quantile_scatter.plot() function:
mean = True   # Also draw the "mean"
show = False  # Do not show the graph and only return the data to be displayed (useful for saving the graph or drawing with something other than matplotlib)

概要

  • 散布図を正しく把握しやすくする可視化ツール
  • 均一データ数の横軸区間に分け、各区間の分位点を表示する
  • 説明は執筆中です

使用例

import quantile_scatter

# ダミーデータ
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# 分位点散布図の描画 [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# 横軸数値リスト
	y = y_ls,	# 縦軸数値リスト
	min_bin_ratio = 1/20,	# 最小グループ割合 (最も小さいグループのレコード数が全体に占める割合)
	ile_ls = [0.25, 0.5, 0.75]	# どこの分位点を出すか
)

発展的な利用方法

quantile_scatter.plot()関数のoption引数

mean = True	# 「平均」も描画する
show = False	# グラフ表示せず、表示対象データのみを返却 (グラフを保存したい場合や、matplotlib以外で描画したい場合などに有効)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantile-scatter-0.3.0.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

quantile_scatter-0.3.0-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file quantile-scatter-0.3.0.tar.gz.

File metadata

  • Download URL: quantile-scatter-0.3.0.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.27.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.6.8

File hashes

Hashes for quantile-scatter-0.3.0.tar.gz
Algorithm Hash digest
SHA256 76b838c72aa4285d25227c35b2ea33bbed31453ce588e68098faa4b13f826b71
MD5 5b8534cf378d0b4c68409ea2a8f10f6a
BLAKE2b-256 ebbc4e946081faa37ca3fa893eb49e90ee84820933c554e9019b8b4ac9b93108

See more details on using hashes here.

File details

Details for the file quantile_scatter-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: quantile_scatter-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.27.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.6.8

File hashes

Hashes for quantile_scatter-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 76d9fec2e4bb66fdd2ac59e0725dd6d607bd3aede29e176b1d68c1945cf1204b
MD5 a31c6d8877bd239ab152f41d8f6023cc
BLAKE2b-256 d9b8cc14aa5fa5c953fe73fa2fb4ef82c2650809b601cad1670e2fedeb88bd14

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page