Skip to main content

Visualization tool that makes it easier to get scatter plots right.

Project description

quantile_scatter

下の方に日本語の説明があります

Overview

  • Visualization tool that makes it easier to get scatter plots right.
  • The number of uniform data is divided into intervals on the x-axis, and the quantile points for each interval are displayed.

Usage

import quantile_scatter

# dummy data
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# plot [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# x-list
	y = y_ls,	# y-list
	min_bin_ratio = 1/20,	# Ratio of the smallest group (the number of records in the smallest group as a percentage of the total)
	ile_ls = [0.25, 0.5, 0.75]
)

Advanced Usage

  • Option argument of quantile_scatter.plot() function:
mean = True   # Also draw the "mean"
show = False  # Do not show the graph and only return the data to be displayed (useful for saving the graph or drawing with something other than matplotlib)
missing_values = [None]	# The specification that x contains a missing value of "None". Internally, the value is included in the statistics as "missing".

概要

  • 散布図を正しく把握しやすくする可視化ツール
  • 均一データ数の横軸区間に分け、各区間の分位点を表示する
  • 説明は執筆中です

使用例

import quantile_scatter

# ダミーデータ
x_ls = [(4 * random.random() - 2) ** 3
	for _ in range(1000)]
y_ls = [math.sin(x) + random.random() * 0.5
	for x in x_ls]

# 分位点散布図の描画 [quantile_scatter]
quantile_scatter.plot(
	x = x_ls,	# 横軸数値リスト
	y = y_ls,	# 縦軸数値リスト
	min_bin_ratio = 1/20,	# 最小グループ割合 (最も小さいグループのレコード数が全体に占める割合)
	ile_ls = [0.25, 0.5, 0.75]	# どこの分位点を出すか
)

発展的な利用方法

quantile_scatter.plot()関数のoption引数

mean = True	# 「平均」も描画する
show = False	# グラフ表示せず、表示対象データのみを返却 (グラフを保存したい場合や、matplotlib以外で描画したい場合などに有効)
missing_values = [None]	# xにNoneという欠損値が含まれるという指定。内部的には"missing"という値として集計に含められる。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantile-scatter-0.3.3.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

quantile_scatter-0.3.3-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file quantile-scatter-0.3.3.tar.gz.

File metadata

  • Download URL: quantile-scatter-0.3.3.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.27.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.6.8

File hashes

Hashes for quantile-scatter-0.3.3.tar.gz
Algorithm Hash digest
SHA256 fe51585f5153db7e3ec00f5f71277c076cad9728a463781702b0a89fba6fc796
MD5 0cd9ed0035b10ea55afdcf2a947223e0
BLAKE2b-256 1ee6142245021fb00866c01827610268ea6f766ecbc1490323171b7d52643a61

See more details on using hashes here.

File details

Details for the file quantile_scatter-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: quantile_scatter-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.27.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.6.8

File hashes

Hashes for quantile_scatter-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a5506644ad0a2b776cacee0338abcdb556741f4ca2b72a13dc5fba142e65f6e2
MD5 c42e393c91cc17ccd0deb9e3d7bd1e02
BLAKE2b-256 c12f6e702ae84e0251aee71d7906c2665bfedbfdee5cf25f1670b2744a4c3a0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page