Skip to main content

A package for quantiative linguistics

Project description

QuantLing

QuantLing:A python package for quantitative syntax analysis.

PyPI version Build Status License

Description

QuantLing is a Python package for Quantitative Linguistics. It provides functionality to quantify linguistic structures and explore language patterns.

This package is consisted of three main parts:

  • depval.py: some indicators about dependency structures and valency structures.
  • lawfitter.py: a small fitter for some laws in QL.
  • lingnet.py: a module for complex network construction.

Installation

You can install QuantLing via pip:

pip install quantling

nltk and conllu are required.

pip install nltk conllu

Quick Start

Here's a simple example of how to use QuantLing:

1. depval

from quantling.depval import DepValAnalyzer   
data = open(r'your_treebank.conllu',encoding='utf-8')
dv = DependencyAnalyzer(data) 

# dependency distance distribution
dv.dd_distribution()
# mean dependency distance of specific wordclasses
dv.mdd(pos='NOUN')
# mean dependency distance of specific dependency relations
dv.mdd(dependency='nsubj')
# proportion of dependency distance
dv.pdd()
# tree width and tree depth
dv.tree()
# tree width distirbution and tree depth distribution
dv.tree_distribution()

# mean valency
dv.mean_valency()
# valency distribution
dv.valency_distribution()
# probalistic valency pattern 
dv.pvp()

or:

dv = getDepFeatures(data)
print(dv)

2. lawfitter

from quantling.lawfitter import fit   
#results = fit(data,model,variant)
results = fit([[1,2,3,4,5,6],[3,4,2,6,8,15]],'zipf')
print(resluts)

3. lingnet

from quantling.lingnet import conllu2edge
import networkx as nx   
# use a conllu file to construction a network
data = open(r'your_treebank.conllu',encoding='utf-8')
edges = conllu2edge(data,mode='dependency')
# or to construct a co-occurance network 
#edges = conllu2edge(data,mode='adjacency')
G = nx.Graph()
G.add_edges_from(edges)

# to estimate the degree exponents
degree =[i[1] for i in G.degree()]
degree_exponents = fitPowerLaw(degree)
print(degree_exponents)

Documentation

For more detailed information, please refer to the video (in Chinese).

Features

  • Dependency distance distribution
  • Mean dependency distance of specific wordclasses
  • Mean dependency distance of specific dependency relations
  • Proportion of dependency distance
  • Tree width and tree depth
  • Tree width distribution and tree depth distribution
  • Mean valency
  • Valency distribution
  • Probabilistic valency pattern
  • Law fitter
  • Complex network construction

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

Citing

If our project has been helpful to you, please give it a star and cite our articles. We would be very grateful.

@article{Yang_2022,
doi = {10.1209/0295-5075/ac8bf2},
url = {https://dx.doi.org/10.1209/0295-5075/ac8bf2},
year = {2022},
month = {sep},
publisher = {EDP Sciences, IOP Publishing and Società Italiana di Fisica},
volume = {139},
number = {6},
pages = {61002},
author = {Mu Yang and Haitao Liu},
title = {The role of syntax in the formation of scale-free language networks},
journal = {Europhysics Letters},
abstract = {The overall structure of a network is determined by its micro features, which are different in both syntactic and non-syntactic networks. However, the fact that most language networks are small-world and scale-free raises the question: does syntax play a role in forming the scale-free feature? To answer this question, we build syntactic networks and co-occurrence networks to compare the generation mechanisms of nodes, and to investigate whether syntactic and non-syntactic factors have distinct roles. The results show that frequency is the foundation of the scale-free feature, while syntax is beneficial to enhance this feature. This research introduces a microscopic approach, which may shed light on the scale-free feature of language networks.}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantling-0.0.9.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

quantling-0.0.9-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file quantling-0.0.9.tar.gz.

File metadata

  • Download URL: quantling-0.0.9.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for quantling-0.0.9.tar.gz
Algorithm Hash digest
SHA256 8e50cc858a46dd2cbda86fd267f2da190c27d0d315de16fe7da90d7cfc65ed7a
MD5 87a8fe11ed6e3f6ade5f52730ece149c
BLAKE2b-256 7c7db8799b3dabf8f3337d2b6cb7dafe0d22ea7cc516630937186a65cad402c5

See more details on using hashes here.

File details

Details for the file quantling-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: quantling-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for quantling-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d1dca6b36b14ee7911dfa31a843ea202adcc4ae9c9d84c7b620e9fe264fe15d5
MD5 381f70cd0770f908b6323259f508822e
BLAKE2b-256 8671ee364ff2bd58fbb092bd937cf8628101655cb0f7c7402b8325913a502d81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page