A PyPI plugin to optimize large language models using Quantum Neural Networks
Project description
Quantum Language Optimizer
Quantum Language Optimizer is a PyPI plug-in for optimizing the running efficiency of large language models. It improves computing speed and reduces the burden on hardware (such as GPU) by combining quantum neural networks (especially recurrent quantum neural networks, RQNN).
Table of contents
- Install
- Quick Start
- Project Structure
- [How to use](#How to use)
- Develop
- contribution
- LICENSE
Install
You can install Quantum Language Optimizer with the following command:
pip install quantum_language_optimizer
quick start
Here is a simple example showing how to use Quantum Language Optimizer to optimize the calculation of a large language model:
from quantum_language_optimizer.models.gpt_quantum import GPTQuantum
#Initialize quantum optimization model
num_qubits = 3
gpt_quantum = GPTQuantum(num_qubits)
#Input sequence data
input_sequence = ['101', '110', '011']
# Get optimized output
optimized_output = gpt_quantum.optimize(input_sequence)
print(optimized_output)
Project structure
quantum_language_optimizer/
├── README.md
├── setup.py
├── quantum_language_optimizer/
│ ├── __init__.py
│ ├── core/
│ │ ├── __init__.py
│ │ ├── quantum_circuit.py
│ │ ├── quantum_rnn.py
│ │ ├── utils.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── base_model.py
│ │ ├── gpt_quantum.py
│ ├── tests/
│ │ ├── __init__.py
│ │ ├── test_quantum_circuit.py
│ │ ├── test_quantum_rnn.py
│ │ ├── test_gpt_quantum.py
How to use
Quantum circuit module
The Quantum Circuit module provides basic quantum circuit operations:
from quantum_language_optimizer.core.quantum_circuit import QuantumCircuitBuilder
# Initialize quantum circuit
qc_builder = QuantumCircuitBuilder(3)
qc_builder.initialize_state('101')
qc_builder.apply_gates()
qc_builder.measure_state()
result = qc_builder.execute_circuit()
print(result)
Recurrent Quantum Neural Network
Recurrent quantum neural networks are used to process sequence data:
from quantum_language_optimizer.core.quantum_rnn import QuantumRNN
#Initialize RQNN
quantum_rnn = QuantumRNN(3)
input_sequence = ['101', '110', '011']
output = quantum_rnn.forward(input_sequence)
print(output)
Large language model optimization
Integrate quantum RNN with large language models (such as GPT):
from quantum_language_optimizer.models.gpt_quantum import GPTQuantum
#Initialize quantum optimization model
num_qubits = 3
gpt_quantum = GPTQuantum(num_qubits)
#Input sequence data
input_sequence = ['101', '110', '011']
# Get optimized output
optimized_output = gpt_quantum.optimize(input_sequence)
print(optimized_output)
develop
Environment settings
Clone project:
git clone https://github.com/yourusername/quantum_language_optimizer.git
cd quantum_language_optimizer
Create a virtual environment and activate it:
python -m venv venv
source venv/bin/activate # Unix
venv\Scripts\activate # Windows
Install dependencies:
pip install -r requirements.txt
Run tests
You can run unit tests using the following command:
python -m unittest discover -s quantum_language_optimizer/tests
contribute
We welcome contributions of any kind! You can participate in the project in the following ways:
Submit an issue or feature request.
Submit a Pull Request for code improvements or new features.
Provide documentation improvements or add more usage examples.
license
Quantum Language Optimizer is open source under the MIT license. See the LICENSE file for details.
### illustrate
- The **Installation** section provides instructions on how to install this plugin.
- The **Quick Start** section provides a simple example showing how to use this plugin.
- The **Project Structure** section shows the source code structure of the project.
- The **Usage** section details how to use each module.
- The **Development** section provides setup and testing methods for the development environment.
- **Contribution** section encourages users to participate in project development.
- The **License** section describes the project's open source license.
You can further improve and supplement the `README.md` file according to specific needs and project progress. If you encounter any problems during the writing process, please feel free to ask and I will try to help. Good luck with your development!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file quantum_language_optimizer-0.1.0.tar.gz
.
File metadata
- Download URL: quantum_language_optimizer-0.1.0.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1ef945ac3f5b3ebd01a89615894b88e00ed4bd2911920cd3187df2c5a92f36d |
|
MD5 | 3bee93f671245d69d22424a28b88994f |
|
BLAKE2b-256 | dedae5412fed35fd0d6749bd28a8be8ca6ea7b91cb3b74172b4ffb0dfa7e6035 |
File details
Details for the file quantum_language_optimizer-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: quantum_language_optimizer-0.1.0-py3-none-any.whl
- Upload date:
- Size: 9.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 298750c07bbdd6f28d10b7a19ff693cf626dd42a16b59cf46e7cdd729acb9968 |
|
MD5 | 4064ce50b49fbd6801a08a36c886fb66 |
|
BLAKE2b-256 | cbb3e8bb50e5f0435bfc3b9d73ef0563a8e62a61088dbdcd53bb1e126cf66c19 |