Skip to main content

A PyPI plugin to optimize large language models using Quantum Neural Networks

Project description

Quantum Language Optimizer

Quantum Language Optimizer is a PyPI plug-in for optimizing the running efficiency of large language models. It improves computing speed and reduces the burden on hardware (such as GPU) by combining quantum neural networks (especially recurrent quantum neural networks, RQNN).

Table of contents

Install

You can install Quantum Language Optimizer with the following command:

pip install quantum_language_optimizer
quick start
Here is a simple example showing how to use Quantum Language Optimizer to optimize the calculation of a large language model:

from quantum_language_optimizer.models.gpt_quantum import GPTQuantum

#Initialize quantum optimization model
num_qubits = 3
gpt_quantum = GPTQuantum(num_qubits)

#Input sequence data
input_sequence = ['101', '110', '011']

# Get optimized output
optimized_output = gpt_quantum.optimize(input_sequence)

print(optimized_output)
Project structure
quantum_language_optimizer/
├── README.md
├── setup.py
├── quantum_language_optimizer/
│ ├── __init__.py
│ ├── core/
│  ├── __init__.py
│  ├── quantum_circuit.py
│  ├── quantum_rnn.py
│  ├── utils.py
│ ├── models/
│  ├── __init__.py
│  ├── base_model.py
│  ├── gpt_quantum.py
│ ├── tests/
│  ├── __init__.py
│  ├── test_quantum_circuit.py
│  ├── test_quantum_rnn.py
│  ├── test_gpt_quantum.py
How to use
Quantum circuit module
The Quantum Circuit module provides basic quantum circuit operations:

from quantum_language_optimizer.core.quantum_circuit import QuantumCircuitBuilder

# Initialize quantum circuit
qc_builder = QuantumCircuitBuilder(3)
qc_builder.initialize_state('101')
qc_builder.apply_gates()
qc_builder.measure_state()
result = qc_builder.execute_circuit()
print(result)
Recurrent Quantum Neural Network
Recurrent quantum neural networks are used to process sequence data:

from quantum_language_optimizer.core.quantum_rnn import QuantumRNN

#Initialize RQNN
quantum_rnn = QuantumRNN(3)
input_sequence = ['101', '110', '011']
output = quantum_rnn.forward(input_sequence)
print(output)
Large language model optimization
Integrate quantum RNN with large language models (such as GPT):

from quantum_language_optimizer.models.gpt_quantum import GPTQuantum

#Initialize quantum optimization model
num_qubits = 3
gpt_quantum = GPTQuantum(num_qubits)

#Input sequence data
input_sequence = ['101', '110', '011']

# Get optimized output
optimized_output = gpt_quantum.optimize(input_sequence)
print(optimized_output)
develop
Environment settings
Clone project:
git clone https://github.com/yourusername/quantum_language_optimizer.git
cd quantum_language_optimizer
Create a virtual environment and activate it:
python -m venv venv
source venv/bin/activate # Unix
venv\Scripts\activate # Windows
Install dependencies:
pip install -r requirements.txt
Run tests
You can run unit tests using the following command:

python -m unittest discover -s quantum_language_optimizer/tests
contribute
We welcome contributions of any kind! You can participate in the project in the following ways:

Submit an issue or feature request.
Submit a Pull Request for code improvements or new features.
Provide documentation improvements or add more usage examples.
license
Quantum Language Optimizer is open source under the MIT license. See the LICENSE file for details.

### illustrate

- The **Installation** section provides instructions on how to install this plugin.
- The **Quick Start** section provides a simple example showing how to use this plugin.
- The **Project Structure** section shows the source code structure of the project.
- The **Usage** section details how to use each module.
- The **Development** section provides setup and testing methods for the development environment.
- **Contribution** section encourages users to participate in project development.
- The **License** section describes the project's open source license.

You can further improve and supplement the `README.md` file according to specific needs and project progress. If you encounter any problems during the writing process, please feel free to ask and I will try to help. Good luck with your development!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_language_optimizer-0.1.0.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file quantum_language_optimizer-0.1.0.tar.gz.

File metadata

File hashes

Hashes for quantum_language_optimizer-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d1ef945ac3f5b3ebd01a89615894b88e00ed4bd2911920cd3187df2c5a92f36d
MD5 3bee93f671245d69d22424a28b88994f
BLAKE2b-256 dedae5412fed35fd0d6749bd28a8be8ca6ea7b91cb3b74172b4ffb0dfa7e6035

See more details on using hashes here.

File details

Details for the file quantum_language_optimizer-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_language_optimizer-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 298750c07bbdd6f28d10b7a19ff693cf626dd42a16b59cf46e7cdd729acb9968
MD5 4064ce50b49fbd6801a08a36c886fb66
BLAKE2b-256 cbb3e8bb50e5f0435bfc3b9d73ef0563a8e62a61088dbdcd53bb1e126cf66c19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page