Skip to main content

No project description provided

Project description

Stability Client verify process License Code style: Black Python Qiskit

Quantum Serverless client

diagram

Installation

pip install quantum_serverless

Documentation

Full docs can be found at https://qiskit-extensions.github.io/quantum-serverless/

Usage

Step 1: write pattern

  from quantum_serverless import distribute_task, get, get_arguments, save_result

   from qiskit import QuantumCircuit
   from qiskit.circuit.random import random_circuit
   from qiskit.primitives import Sampler
   from qiskit.quantum_info import SparsePauliOp

   # 1. let's annotate out function to convert it
   # to distributed async function
   # using `distribute_task` decorator
   @distribute_task()
   def distributed_sample(circuit: QuantumCircuit):
       """Calculates quasi dists as a distributed function."""
       return Sampler().run(circuit).result().quasi_dists[0]


   # 2. our program will have one arguments
   # `circuits` which will store list of circuits
   # we want to sample in parallel.
   # Let's use `get_arguments` funciton
   # to access all program arguments
   arguments = get_arguments()
   circuits = arguments.get("circuits", [])

   # 3. run our functions in a loop
   # and get execution references back
   function_references = [
       distributed_sample(circuit)
       for circuit in circuits
   ]

   # 4. `get` function will collect all
   # results from distributed functions
   collected_results = get(function_references)

   # 5. `save_result` will save results of program execution
   # so we can access it later
   save_result({
       "quasi_dists": collected_results
   })

Step 2: run pattern

   from quantum_serverless import ServerlessProvider, QiskitPattern
   from qiskit.circuit.random import random_circuit

   serverless = ServerlessProvider(
       username="<USERNAME>", 
       password="<PASSWORD>",
       host="<GATEWAY_ADDRESS>",
   )

   # create program
   program = QiskitPattern(
       title="Quickstart",
       entrypoint="pattern.py",
       working_dir="./src"
   )

   # create inputs to our program
   circuits = []
   for _ in range(3):
       circuit = random_circuit(3, 2)
       circuit.measure_all()
       circuits.append(circuit)

   # run program
   job = serverless.run(
       program=program,
       arguments={
           "circuits": circuits
       }
   )

Step 3: monitor job status

   job.status()
   # 'DONE'
    
   # or get logs
   job.logs()

Step 4: get results

   job.result()
   # {"quasi_dists": [
   #  {"0": 0.25, "1": 0.25, "2": 0.2499999999999999, "3": 0.2499999999999999},
   #  {"0": 0.1512273969460124, "1": 0.0400459556274728, "6": 0.1693190975212014, "7": 0.6394075499053132},
   #  {"0": 0.25, "1": 0.25, "4": 0.2499999999999999, "5": 0.2499999999999999}
   # ]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quantum_serverless-0.10.1.tar.gz (33.4 kB view details)

Uploaded Source

Built Distribution

quantum_serverless-0.10.1-py3-none-any.whl (49.3 kB view details)

Uploaded Python 3

File details

Details for the file quantum_serverless-0.10.1.tar.gz.

File metadata

  • Download URL: quantum_serverless-0.10.1.tar.gz
  • Upload date:
  • Size: 33.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.14

File hashes

Hashes for quantum_serverless-0.10.1.tar.gz
Algorithm Hash digest
SHA256 238a020a7ae77eae667ac0cda7b67d837823824179072862364ff4b414598ee8
MD5 0d76a984c34a049e457b2d6f24ed2bc0
BLAKE2b-256 197aec5e521c47557a751c6d63bef1f63b7801010332cb952b6715b9def7358d

See more details on using hashes here.

File details

Details for the file quantum_serverless-0.10.1-py3-none-any.whl.

File metadata

File hashes

Hashes for quantum_serverless-0.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2985218fc76b8f4f5d9a7545ed8a531d72e39c15eed40ede762015bd75496536
MD5 480f74322bf45e2b31d58c4771854a78
BLAKE2b-256 8038c559c14db8484d760e8e045212ff027939079fd9e68fd8cb91ab86966867

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page