Skip to main content

Defines EPCIS models and XML parsing.

Project description

https://gitlab.com/serial-lab/quartet_epcis/badges/master/pipeline.svg https://gitlab.com/serial-lab/quartet_epcis/badges/master/coverage.svg https://badge.fury.io/py/quartet_epcis.svg

Built on top of the world-class EPCPyYes python package. Real EPCIS support for serious people running real systems.

 ________  ___   ___  _______   ________  ________  ___  ________
|\   __  \|\  \ |\  \|\  ___ \ |\   __  \|\   ____\|\  \|\   ____\
\ \  \|\  \ \  \\_\  \ \   __/|\ \  \|\  \ \  \___|\ \  \ \  \___|_
 \ \  \\\  \ \______  \ \  \_|/_\ \   ____\ \  \    \ \  \ \_____  \
  \ \  \\\  \|_____|\  \ \  \_|\ \ \  \___|\ \  \____\ \  \|____|\  \
   \ \_____  \     \ \__\ \_______\ \__\    \ \_______\ \__\____\_\  \
    \|___| \__\     \|__|\|_______|\|__|     \|_______|\|__|\_________\
          \|__|                                            \|_________|

The essential Open-Source EPCIS component for the QU4RTET traceability platform.

For more on QU4RTET see http://www.serial-lab.com

The quartet_epcis python package is a Django application that contains the base database models necessary for the support of EPCIS 1.2 data persistence to an RDBMS. The quartet_epcis.parsing package contains an EPCIS XML parser that will take an input stream of XML data and save it to a configured database back-end.

The quartet_epcis.app_models directory contains a set of Django ORM models that are used to define the database scheme and store EPCIS data in the database.

Documentation

Find the latest docs here:

https://serial-lab.gitlab.io/quartet_epcis/

The full (pre-built )documentation is under the docs directory in this project.

Quickstart

Install QU4RTET EPCIS

pip install quartet_epcis

Add it to your INSTALLED_APPS:

INSTALLED_APPS = (
    ...
    'quartet_epcis',
    ...
)

Features

  • Maintains the database schema for EPCIS 1.2 support.

  • Parses EPCIS 1.2 XML streams to the configured backend database system.

  • Enforces business rules around decommissioning, commissioning, aggregation, disaggregation, etc.

Running The Unit Tests

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install -r requirements_test.txt
(myenv) $ python runtests.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quartet_epcis-4.0.0.tar.gz (54.5 kB view details)

Uploaded Source

Built Distribution

quartet_epcis-4.0.0-py2.py3-none-any.whl (73.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file quartet_epcis-4.0.0.tar.gz.

File metadata

  • Download URL: quartet_epcis-4.0.0.tar.gz
  • Upload date:
  • Size: 54.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for quartet_epcis-4.0.0.tar.gz
Algorithm Hash digest
SHA256 895aeea1d87ec311bc725be1c1b6d1fca77f147503e692e60ffb2fc6c2bbe8fa
MD5 c002ed1ec5b6b07aaeb15622140a23d2
BLAKE2b-256 dba7f7dcdfc79aac61be0ae94e8314555950e10cc0061173e472b4b790956726

See more details on using hashes here.

File details

Details for the file quartet_epcis-4.0.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for quartet_epcis-4.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9d1e9d05a2e34c393f55d50e22ae03ec9a18c2840b3078eb37dffaa00ce57583
MD5 7f8f1cf4527c1e86c978644d322e8425
BLAKE2b-256 79812d48c6f32d6df223f0c4d95a3fe66c24804d0d5df8519a4b5d95f7046102

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page