Skip to main content

Utitilies for constructing and manipulating models for non-local structural dependencies in genomic sequences

Project description

Quasinet

quasinet PyPI Downloads

PyPI version

Description

Infer non-local structural dependencies in genomic sequences. Genomic sequences are esentially compressed encodings of phenotypic information. This package provides a novel set of tools to extract long-range structural dependencies in genotypic data that define the phenotypic outcomes. The key capabilities implemented here are as follows:

  1. Compute the Quasinet (Q-net) given a database of nucleic acid sequences. The Q-net is a family of conditional inference trees that capture the predictability of each nucleotide position given the rest of the genome. The constructed Q-net for COVID-19 and Influenza A H1N1 HA 2008-9 is shown below.
COVID-19 INFLUENZA
  1. Compute a structure-aware evolution-adaptive notion of distance between genomes, which is demonstrably more biologically relevant compared to the standard edit distance.

  2. Draw samples in-silico that have a high probability of being biologically correct. For example, given a database of Influenza sequences, we can generate a new genomic sequence that has a high probability of being a valid influenza sequence.

Installation

To install with pip:

pip install quasinet

To fix error with Mac or Windows:

from quasinet.osfix import osfix
# for windows
osfix('win')
# for max x86_64 (macbook pro)
osfix('macx86')
# mac arm (macbook air)
osfix('macarm')

NOTE: If trying to reproduce the paper below, please use pip install quasinet==0.0.58

Dependencies

  • scikit-learn
  • scipy
  • numpy
  • numba
  • pandas
  • joblib
  • biopython

Usage

from quasinet import qnet

# initialize qnet
myqnet = qnet.Qnet()

# train the qnet
myqnet.fit(X)

# compute qdistance
qdist = qnet.qdistance(seq1, seq2, myqnet, myqnet) 

Examples

Examples are located here.

Documentation

For more documentation, see here.

Papers

For reference, please check out our paper:

Preparing For the Next Pandemic: Learning Wild Mutational Patterns At Scale For Analyzing Sequence Divergence In Novel Pathogens

Authors

You can reach the ZED lab at: zed.uchicago.edu

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quasinet-0.1.22.tar.gz (14.5 MB view details)

Uploaded Source

Built Distribution

quasinet-0.1.22-py3-none-any.whl (15.2 MB view details)

Uploaded Python 3

File details

Details for the file quasinet-0.1.22.tar.gz.

File metadata

  • Download URL: quasinet-0.1.22.tar.gz
  • Upload date:
  • Size: 14.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.10.8

File hashes

Hashes for quasinet-0.1.22.tar.gz
Algorithm Hash digest
SHA256 50ae2106a469a2802f1ac8097f566abd28355168d4d0aeec8e25609b223863cc
MD5 359c2dfeffe0e82030d6ce719080c3c4
BLAKE2b-256 0b57c0a2e066b5f271ca0e48364df06556dbc7cf8d567d6cdc9f56309673cfdd

See more details on using hashes here.

File details

Details for the file quasinet-0.1.22-py3-none-any.whl.

File metadata

  • Download URL: quasinet-0.1.22-py3-none-any.whl
  • Upload date:
  • Size: 15.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.10.8

File hashes

Hashes for quasinet-0.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 82327ab244c9bf23f73f5eabe320695b877f635be9c2ba8b046954c8ecec35d3
MD5 7ea69f85534fbdcc5732282a9c427874
BLAKE2b-256 eb641d161c9e342fe860c7a8c43d21b9923f66a5a58f9d9dc42fca26163a19fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page