A Python toolkit to analzye photon timetrace data from qubit sensors
Project description
Qudi Hira Analysis
This toolkit automates a large portion of the work surrounding data analysis on quantum sensing experiments where the primary raw data extracted is photon counts.
The high level interface is abstracted, and provides a set of functions to automate data import, handling and analysis. It is designed to be exposed through Jupyter Notebooks, although the abstract interface allows it to be integrated into larger, more general frameworks as well (with only some pain). Using the toolkit itself should only require a beginner-level understanding of Python.
It also aims to improve transparency and reproducibility in experimental data analysis. In an ideal scenario, two lines of code are sufficient to recreate all output data.
Python offers some very handy features like dataclasses, which are heavily used by this toolkit. Dataclasses offer a full OOP (object-oriented programming) experience while analyzing complex data sets. They provide a solid and transparent structure to the data to reduce errors arising from data fragmentation. This generally comes at a large performance cost, but this is (largely) sidestepped by lazy loading data and storing metadata instead wherever possible.
Installation
pip install qudi-hira-analysis
Citation
If you are publishing scientific results, you can cite this work as: https://doi.org/10.5281/zenodo.7604670
Examples
First set up the DataHandler
object (henceforth referred to as dh
) with the correct paths to the data and figure
folders.
Everything revolves around the dh
object. It is the main interface to the toolkit and is initialized with the
following required arguments:
data_folder
is the main folder where all the data is stored, it can be the direct path to the data, or composed of several sub-folders, each containing the data for a specific measurementfigure_folder
is the folder where the output figures will be saved
Optional arguments:
measurement_folder
is the specific sub-folder indata_folder
where the data for a specific measurement is stored
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
from qudi_hira_analysis import DataHandler
dh = DataHandler(
data_folder=Path("C:\\", "Data"),
figure_folder=Path("C:\\", "QudiHiraAnalysis"),
measurement_folder=Path("20230101_NV1")
)
To load a specific set of measurements from the data folder, use the dh.load_measurements()
method, which takes the
following required arguments:
measurement_str
is the string that is used to identify the measurement. It is used to filter the data files in thedata_folder
andmeasurement_folder
(if specified)
Optional arguments:
qudi
is a boolean. IfTrue
, the data is assumed to be in the format used by Qudi (default: True)pulsed
is a boolean. IfTrue
, the data is assumed to be in the format used by Qudi for pulsed measurements ( default: False)extension
is the extension of the data files (default: ".dat")
The load_measurements
function returns a dictionary containing the measurement data filtered by measurement_str
.
-
The dictionary keys are measurement timestamps in "(year)(month)(day)-(hour)(minute)-(second)" format.
-
The dictionary values are
MeasurementDataclass
objects whose schema is shown visually here.
Example 0: NV-PL measurements
pixel_scanner_measurements = dh.load_measurements(measurement_str="PixelScanner")
fwd, bwd = pixel_scanner_measurements["20230101-0420-00"].data
# If size is known, it can be specified here
fwd.size["real"] = {"x": 1e-6, "y": 1e-6, "unit": "m"}
fig, ax = plt.subplots()
# Perform (optional) image corrections
fwd.filter_gaussian(sigma=0.5)
# Add scale bar, color bar and plot the data
img = fwd.show(cmap="inferno", ax=ax)
fwd.add_scale(length=1e-6, ax=ax, height=1)
cbar = fig.colorbar(img)
cbar.set_label("NV-PL (kcps)")
# Save the figure to the figure folder specified earlier
dh.save_figures(filepath="nv_pl_scan", fig=fig, only_jpg=True)
Example 1: Nanonis AFM measurements
afm_measurements = dh.load_measurements(measurement_str="Scan", extension=".sxm")
afm = afm_measurements["20230101-0420-00"].data
# Print the channels available in the data
afm.list_channels()
topo = afm.get_channel("Z")
fig, ax = plt.subplots()
# Perform (optional) image corrections
topo.correct_lines()
topo.correct_plane()
topo.filter_lowpass(fft_radius=20)
topo.zero_min()
# Add scale bar, color bar and plot the data
img = topo.show(cmap="inferno", ax=ax)
topo.add_scale(length=1e-6, ax=ax, height=1, fontsize=10)
cbar = fig.colorbar(img)
cbar.set_label("Height (nm)")
dh.save_figures(filepath="afm_topo", fig=fig, only_jpg=True)
Example 2: Autocorrelation measurements (Antibunching fit)
autocorrelation_measurements = dh.load_measurements(measurement_str="Autocorrelation")
fig, ax = plt.subplots()
for autocorrelation in autocorrelation_measurements.values():
# Plot the data
sns.lineplot(data=autocorrelation.data, x="Controlled variable(s)", y="g2(t)", ax=ax)
# Fit the data using the antibunching function
fit_x, fit_y, result = dh.fit(x="Controlled variable(s)", y="g2(t)", data=autocorrelation.data,
fit_function=dh.fit_function.antibunching)
# Plot the fit
sns.lineplot(x=fit_x, y=fit_y, ax=ax)
# Save the figure to the figure folder specified earlier
dh.save_figures(filepath="autocorrelation_variation", fig=fig)
Example 3: ODMR measurements (double Lorentzian fit)
odmr_measurements = dh.load_measurements(measurement_str="ODMR", pulsed=True)
fig, ax = plt.subplots()
for odmr in odmr_measurements.values():
sns.scatterplot(data=odmr.data, x="Controlled variable(Hz)", y="Signal", ax=ax)
fit_x, fit_y, result = dh.fit(x="Controlled variable(Hz)", y="Signal", data=odmr.data,
fit_function=dh.fit_function.lorentzian_double)
sns.lineplot(x=fit_x, y=fit_y, ax=ax)
dh.save_figures(filepath="odmr_variation", fig=fig)
Example 4: Rabi measurements (sine exponential decay fit)
rabi_measurements = dh.load_measurements(measurement_str="Rabi", pulsed=True)
fig, ax = plt.subplots()
for rabi in rabi_measurements.values():
sns.scatterplot(data=rabi.data, x="Controlled variable(s)", y="Signal", ax=ax)
fit_x, fit_y, result = dh.fit(x="Controlled variable(s)", y="Signal", data=rabi.data,
fit_function=dh.fit_function.sineexponentialdecay)
sns.lineplot(x=fit_x, y=fit_y, ax=ax)
dh.save_figures(filepath="rabi_variation", fig=fig)
Example 5: Temperature data
temperature_measurements = dh.load_measurements(measurement_str="Temperature")
temperature = pd.concat([t.data for t in temperature_measurements.values()])
fig, ax = plt.subplots()
sns.lineplot(data=temperature, x="Time", y="Temperature", ax=ax)
dh.save_figures(filepath="temperature_monitoring", fig=fig)
Measurement Dataclass Schema
flowchart LR
subgraph Standard Data
MeasurementDataclass --o filepath1[filepath: Path];
MeasurementDataclass --o data1[data: DataFrame];
MeasurementDataclass --o params1[params: dict];
MeasurementDataclass --o timestamp1[timestamp: datetime.datetime];
MeasurementDataclass --o methods1[get_param_from_filename: Callable];
MeasurementDataclass --o methods2[set_datetime_index: Callable];
end
subgraph Pulsed Data
MeasurementDataclass -- pulsed --> PulsedMeasurementDataclass;
PulsedMeasurementDataclass -- measurement --> PulsedMeasurement;
PulsedMeasurement --o filepath2[filepath: Path];
PulsedMeasurement --o data2[data: DataFrame];
PulsedMeasurement --o params2[params: dict];
PulsedMeasurementDataclass -- laser_pulses --> LaserPulses;
LaserPulses --o filepath3[filepath: Path];
LaserPulses --o data3[data: DataFrame];
LaserPulses --o params3[params: dict];
PulsedMeasurementDataclass -- timetrace --> RawTimetrace;
RawTimetrace --o filepath4[filepath: Path];
RawTimetrace --o data4[data: DataFrame];
RawTimetrace --o params4[params: dict];
end
Supports common fitting routines
To get the full list of available fit routines, use the dh.fit_function
attribute. The fit functions are:
Dimension | Fit |
---|---|
1d | decayexponential |
biexponential | |
decayexponentialstretched | |
gaussian | |
gaussiandouble | |
gaussianlinearoffset | |
hyperbolicsaturation | |
linear | |
lorentzian | |
lorentziandouble | |
lorentziantriple | |
sine | |
sinedouble | |
sinedoublewithexpdecay | |
sinedoublewithtwoexpdecay | |
sineexponentialdecay | |
sinestretchedexponentialdecay | |
sinetriple | |
sinetriplewithexpdecay | |
sinetriplewiththreeexpdecay | |
2d | twoDgaussian |
Inbuilt measurement tree visualizer
>>> dh.data_folder_tree()
# Output
├── 20211116_NetworkAnalysis_SampleIn_UpperPin.csv
├── 20211116_NetworkAnalysis_SampleOut_UpperPin.csv
├── 20211116_NetworkAnalysis_TipIn_LowerPin.csv
├── 20211116_NetworkAnalysis_TipIn_UpperPin.csv
├── 20211116_NetworkAnalysis_TipOut_LowerPin.csv
├── 20211116_NetworkAnalysis_TipOut_UpperPin.csv
├── ContactTestingMeasurementHead
│ ├── C2_Reference.txt
│ ├── C2_SampleLowerPin.txt
│ ├── C2_SampleUpperPin.txt
│ ├── C2_TipLowerPin.txt
│ └── C2_TipUpperPin.txt
├── Sample_MW_Pin_comparision.png
├── Tip_MW_Pin_comparision.png
└── Tip_Sample_MW_Pin_comparision.png
Overall Schema
flowchart TD
IOHandler <-- Handle IO operations --> DataLoader;
DataLoader <-- Map IO callables --> DataHandler;
Qudi[Qudi FitLogic] --> AnalysisLogic;
AnalysisLogic -- Inject fit functions --> DataHandler;
DataHandler -- Fit data --> Plot;
DataHandler -- Structure data --> MeasurementDataclass;
MeasurementDataclass -- Plot data --> Plot[JupyterLab Notebook];
Plot -- Save plotted data --> DataHandler;
style MeasurementDataclass fill: #bbf, stroke: #f66, stroke-width: 2px, color: #fff, stroke-dasharray: 5 5
License
This license of this project is located in the top level folder under LICENSE
. Some specific files contain their
individual licenses in the file header docstring.
Build
Prerequisites
Latest version of:
Clone the repository
git clone https://github.com/dineshpinto/qudi-hira-analysis.git
Installing dependencies with Poetry
poetry install
Add Poetry environment to Jupyter kernel
poetry run python -m ipykernel install --user --name=qudi-hira-analysis
OR installing dependencies with conda
Creating the conda environment
conda env create -f tools/conda-env-xx.yml
where xx
is either win10
, osx-intel
or osx-apple-silicon
.
Activate conda environment
conda activate qudi-hira-analysis
Add conda environment to Jupyter kernel
python -m ipykernel install --user --name=qudi-hira-analysis
Start the analysis
If installed with Poetry
poetry run jupyter lab
OR with conda
jupyter lab
Don't forget to switch to the qudi-hira-analysis
kernel in JupyterLab.
Makefile
The Makefile located in notebooks/
is configured to generate a variety of outputs:
make pdf
: Converts all notebooks to PDF (requires LaTeX backend)make html
: Converts all notebooks to HTMLmake py
: Converts all notebooks to Python (can be useful for VCS)make all
: Sequentially runs all the notebooks in folder
To use the make
command on Windows you can install Chocolatey, then
install make with choco install make
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file qudi_hira_analysis-1.4.3.tar.gz
.
File metadata
- Download URL: qudi_hira_analysis-1.4.3.tar.gz
- Upload date:
- Size: 58.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3612bd075aac565bd3af7f07eb965c7f1a4671cd723aa0c94121285fbc7d5522 |
|
MD5 | 88894f110fafe54fb6145c3127529fdc |
|
BLAKE2b-256 | ca087b9aabac737b8e27376e2ab43772df7684fd0d1f7291b32de3f2a1e4a03a |
File details
Details for the file qudi_hira_analysis-1.4.3-py3-none-any.whl
.
File metadata
- Download URL: qudi_hira_analysis-1.4.3-py3-none-any.whl
- Upload date:
- Size: 70.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35584fbe882a17d6d2c2379ad450255a47c7ccf6281a797141ca6e743d1c4b4f |
|
MD5 | 7019d31dbaccafb8bbcdab3e3dce7149 |
|
BLAKE2b-256 | 9b72e5bd447bb74551c0778f7c90852cad463f7c962d4f72fdb0d34a3505a7f7 |