Skip to main content

A Python toolkit to analzye photon timetrace data from qubit sensors

Project description

DOI PyPi version Python 3.10 Downloads codecov unittest

Qudi Hira Analysis

Analytics suite for qubit SPM using FPGA timetaggers

Installation

pip install qudi-hira-analysis

Update to latest version

pip install --upgrade qudi-hira-analysis

Citation

If you are publishing scientific results that use this code, as good scientific practice you should cite this work.

Features

  • Automated data import and handling
  • Works natively with data from Qudi and Qudi-Hira
  • Fast and robust curve fitting for NV-ODMR 2D maps, Autocorrelation, Rabi, Ramsey, T1, T2 and more...
  • Supports all file formats used in NV magnetometry, AFM, MFM and NV-SPM
  • Uses a Dataclass-centered design for easy access to data and metadata

Usage

from pathlib import Path
import seaborn as sns

from qudi_hira_analysis import DataHandler

dh = DataHandler(
    data_folder=Path("C:/Data"),  # Path to data folder
    figure_folder=Path("C:/QudiHiraAnalysis"),  # Path to figure folder
    measurement_folder=Path("20230101_NV1")  # Measurement folder name (optional)
)

# Lazy-load all pulsed measurements with "odmr" in the path into a Dataclass
odmr_measurements = dh.load_measurements("odmr", pulsed=True)

# Fit ODMR data with a double Lorentzian
odmr = odmr_measurements["20230101-0420-00"]
x_fit, y_fit, result = dh.fit(x="Controlled variable(Hz)", y="Signal",
                              fit_function=dh.fit_function.lorentziandouble, data=odmr.data)

# Plot the data and the fit
ax = sns.scatterplot(x="Controlled variable(Hz)", y="Signal", data=odmr.data, label="Data")
sns.lineplot(x=x_fit, y=y_fit, ax=ax, label="Fit")

# Calculate the ODMR splitting
ax.axvline(result.best_values["l0_center"], ls="--", color="C1")
ax.axvline(result.best_values["l1_center"], ls="--", color="C1")
splitting = result.best_values["l1_center"] - result.best_values["l0_center"]
ax.set_title(f"ODMR splitting = {splitting / 1e6:.1f} MHz")

# Generate fit report
print(result.fit_report())

# Save figure
dh.save_figures(filepath=Path("odmr_fit"), fig=ax.get_figure())

ODMR

Documentation

The full documentation is available here.

Schema

Overall

flowchart TD
    IOHandler <-- Handle IO operations --> DataLoader;
    DataLoader <-- Map IO callables --> DataHandler;
    Qudi[Qudi FitLogic] --> AnalysisLogic;
    AnalysisLogic -- Inject fit functions --> DataHandler;
    DataHandler -- Fit data --> Plot;
    DataHandler -- Structure data --> MeasurementDataclass;
    MeasurementDataclass -- Plot data --> Plot[JupyterLab Notebook];
    Plot -- Save plotted data --> DataHandler;
    style MeasurementDataclass fill: #bbf, stroke: #f66, stroke-width: 2px, color: #fff, stroke-dasharray: 5 5

Dataclass

flowchart LR
    subgraph Standard Data
        MeasurementDataclass --o filepath1[filepath: Path];
        MeasurementDataclass --o data1[data: DataFrame];
        MeasurementDataclass --o params1[params: dict];
        MeasurementDataclass --o timestamp1[timestamp: datetime.datetime];
        MeasurementDataclass --o methods1[get_param_from_filename: Callable];
        MeasurementDataclass --o methods2[set_datetime_index: Callable];
    end
    subgraph Pulsed Data
        MeasurementDataclass -- pulsed --> PulsedMeasurementDataclass;
        PulsedMeasurementDataclass -- measurement --> PulsedMeasurement;
        PulsedMeasurement --o filepath2[filepath: Path];
        PulsedMeasurement --o data2[data: DataFrame];
        PulsedMeasurement --o params2[params: dict];
        PulsedMeasurementDataclass -- laser_pulses --> LaserPulses;
        LaserPulses --o filepath3[filepath: Path];
        LaserPulses --o data3[data: DataFrame];
        LaserPulses --o params3[params: dict];
        PulsedMeasurementDataclass -- timetrace --> RawTimetrace;
        RawTimetrace --o filepath4[filepath: Path];
        RawTimetrace --o data4[data: DataFrame];
        RawTimetrace --o params4[params: dict];
    end

License

This license of this project is located in the top level folder under LICENSE. Some specific files contain their individual licenses in the file header docstring.

Build

Prerequisites

Clone repo, install deps and add environment to Jupyter

git clone https://github.com/dineshpinto/qudi-hira-analysis.git
cd qudi-hira-analysis
poetry install
poetry run python -m ipykernel install --user --name=qudi-hira-analysis
poetry run jupyter lab

Makefile

The Makefile located in notebooks/ is configured to generate a variety of outputs:

  • make pdf : Converts all notebooks to PDF (requires LaTeX backend)
  • make html: Converts all notebooks to HTML
  • make py : Converts all notebooks to Python (can be useful for VCS)
  • make all : Sequentially runs all the notebooks in folder

To use the make command on Windows you can install Chocolatey, then install make with choco install make

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qudi_hira_analysis-1.6.0.tar.gz (69.8 kB view details)

Uploaded Source

Built Distribution

qudi_hira_analysis-1.6.0-py3-none-any.whl (83.2 kB view details)

Uploaded Python 3

File details

Details for the file qudi_hira_analysis-1.6.0.tar.gz.

File metadata

  • Download URL: qudi_hira_analysis-1.6.0.tar.gz
  • Upload date:
  • Size: 69.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.2 Darwin/23.1.0

File hashes

Hashes for qudi_hira_analysis-1.6.0.tar.gz
Algorithm Hash digest
SHA256 0698c152f4fba81bdb614eff78e4009914d887ecc9cfa9ab6bd10140beef8a0a
MD5 5f85ff459a401b73b2c7a2af57be18d2
BLAKE2b-256 4009d232fb91e096bb9ccdc65eab84f405882100455f0ea2268f60d40f8e963c

See more details on using hashes here.

File details

Details for the file qudi_hira_analysis-1.6.0-py3-none-any.whl.

File metadata

File hashes

Hashes for qudi_hira_analysis-1.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fe6446881fcdebeeab0d4b8c0d9d920d2ef578b38ee193778ec1d9a57c51d040
MD5 47728501402728de4986ecc36b88dd57
BLAKE2b-256 ff39a62f94fe0a591ba669223675917b9156ddb066657c3d8c33c2be749a8958

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page