Skip to main content

A package for sampling from intractable distributions with LLMs.

Project description

QUEST: Quality-Aware Metropolis-Hastings Sampling for Machine Translation

Gonçalo Faria, Sweta Agrawal, António Farinhas, Ricardo Rei, José G. C. de Souza, Andre Martins

Paper: arxiv link goes here

TL;DR: This paper presents a method to generate diverse and high-quality machine translations by sampling from a Gibbs distribution using the Metropolis-Hastings algorithm.

Abstract:

An important challenge in machine translation (MT) is to generate high-quality and diverse translations. Prior work has shown that the estimated likelihood from the MT model correlates poorly with translation quality. In contrast, quality evaluation metrics (such as COMET or BLEURT) exhibit high correlations with human judgments, which has motivated their use as rerankers (such as quality-aware and minimum Bayes risk decoding). However, relying on a single translation with high estimated quality increases the chances of "gaming the metric''. In this paper, we address the problem of sampling a set of high-quality and diverse translations. We provide a simple and effective way to avoid over-reliance on noisy quality estimates by using them as the energy function of a Gibbs distribution. Instead of looking for a mode in the distribution, we generate multiple samples from high-density areas through the Metropolis-Hastings algorithm, a simple Markov chain Monte Carlo approach. The results show that our proposed method leads to high-quality and diverse outputs across multiple language pairs (English$\leftrightarrow${German, Russian}) with two strong decoder-only LLMs (Alma-7b, Tower-7b).


Documentation

TBD


Quick Start Examples

Install

Install using pip (recommended):

pip install quest-decoding

Install using pip (from github):

pip install git+https://github.com/deep-spin/quest-decoding.git
Sentiment Steering
    from langchain.prompts import PromptTemplate
    from quest import RewardModel
    from quest import VLLM


    template =  PromptTemplate.from_template(
        "I received the following comment on a X: {tweet}. How should I respond?:\n"
    ) # a prompt template you define - usefull for tasks like translation. 
    
    test_input_data = [{
        "tweet": "You should refrain from commenting on this matter."
    }]

    model = VLLM(
        model_path="haoranxu/ALMA-7B",
        prompt_template=template,
    )

    reward = RewardModel("lvwerra/distilbert-imdb")  # sentiment model from HF. 
    
    chain = Quest(
        input_data=test_input_data,
        model=model,
        reward=reward,
    )
    
    chain_outputs = chain.run(
        steps=10,
        use_tqdm=True,
    )
    
    print(chain_outputs.samples)
        

Contact

For bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please send an e-mail.


Citation

@inproceedings{
    questdecoding,
    title={QUEST: Quality-Aware Metropolis-Hastings Sampling for Machine Translation},
    author={Gonçalo Faria, Sweta Agrawal, António Farinhas, Ricardo Rei, José G. C. de Souza, Andre Martins},
    booktitle={},
    year={2024},
    url={arxiv link goes here}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quest-decoding-1.0.3.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

quest_decoding-1.0.3-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file quest-decoding-1.0.3.tar.gz.

File metadata

  • Download URL: quest-decoding-1.0.3.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for quest-decoding-1.0.3.tar.gz
Algorithm Hash digest
SHA256 c4420caf8d5761bd85407062551d6a2ea8c04f629ee41f50ee9811749dd11672
MD5 d979bf65ec0baa3aa082daa5b47030cd
BLAKE2b-256 4890917289ebcb3054c6a80a31dbf3f62f0869c243874077226699ac8e79f3cb

See more details on using hashes here.

File details

Details for the file quest_decoding-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for quest_decoding-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2639f79161d86a69a6f0b61e260c93c690ce979e289f211990129aabdf41455b
MD5 fb2c64e04748c0a966c9c5bace296c84
BLAKE2b-256 cee17e35edbe8e70b45b16538537cbb731f60b65059117c9cc9d00686d7310e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page