Skip to main content

A package for sampling from intractable distributions with LLMs.

Project description

QUEST: Quality-Aware Metropolis-Hastings Sampling for Machine Translation

Gonçalo Faria, Sweta Agrawal, António Farinhas, Ricardo Rei, José G. C. de Souza, Andre Martins

Paper: arxiv link goes here

TL;DR: This paper presents a method to generate diverse and high-quality machine translations by sampling from a Gibbs distribution using the Metropolis-Hastings algorithm.

Abstract:

An important challenge in machine translation (MT) is to generate high-quality and diverse translations. Prior work has shown that the estimated likelihood from the MT model correlates poorly with translation quality. In contrast, quality evaluation metrics (such as COMET or BLEURT) exhibit high correlations with human judgments, which has motivated their use as rerankers (such as quality-aware and minimum Bayes risk decoding). However, relying on a single translation with high estimated quality increases the chances of "gaming the metric''. In this paper, we address the problem of sampling a set of high-quality and diverse translations. We provide a simple and effective way to avoid over-reliance on noisy quality estimates by using them as the energy function of a Gibbs distribution. Instead of looking for a mode in the distribution, we generate multiple samples from high-density areas through the Metropolis-Hastings algorithm, a simple Markov chain Monte Carlo approach. The results show that our proposed method leads to high-quality and diverse outputs across multiple language pairs (English$\leftrightarrow${German, Russian}) with two strong decoder-only LLMs (Alma-7b, Tower-7b).


Documentation

TBD


Quick Start Examples

Install

Install using pip (recommended):

pip install quest-decoding

Install using pip (from github):

pip install git+https://github.com/deep-spin/quest-decoding.git
Sentiment Steering
    from langchain.prompts import PromptTemplate
    from quest import RewardModel
    from quest import VLLM


    template =  PromptTemplate.from_template(
        "I received the following comment on a X: {tweet}. How should I respond?:\n"
    ) # a prompt template you define - usefull for tasks like translation. 
    
    test_input_data = [{
        "tweet": "You should refrain from commenting on this matter."
    }]

    model = VLLM(
        model_path="haoranxu/ALMA-7B",
        prompt_template=template,
    )

    reward = RewardModel("lvwerra/distilbert-imdb")  # sentiment model from HF. 
    
    chain = Quest(
        input_data=test_input_data,
        model=model,
        reward=reward,
    )
    
    chain_outputs = chain.run(
        steps=10,
        use_tqdm=True,
    )
    
    print(chain_outputs.samples)
        

Contact

For bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please send an e-mail.


Citation

@inproceedings{
    questdecoding,
    title={QUEST: Quality-Aware Metropolis-Hastings Sampling for Machine Translation},
    author={Gonçalo Faria, Sweta Agrawal, António Farinhas, Ricardo Rei, José G. C. de Souza, Andre Martins},
    booktitle={},
    year={2024},
    url={arxiv link goes here}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quest-decoding-1.0.9.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

quest_decoding-1.0.9-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file quest-decoding-1.0.9.tar.gz.

File metadata

  • Download URL: quest-decoding-1.0.9.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for quest-decoding-1.0.9.tar.gz
Algorithm Hash digest
SHA256 a8bf2c245a3f9302836927c8eda5ad6211d164fa868f473a387f12289df745cb
MD5 e90eb26864638e2220e4d5d79501f06a
BLAKE2b-256 d69dfca54e398d6df81e0c62852a021b6be44c0be663204ba56b510cebe4d48c

See more details on using hashes here.

File details

Details for the file quest_decoding-1.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for quest_decoding-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 16899b12ab76e15ec62ef3b0fa92ab56e5bb5a7063bccaddbe0bb72bd22203d9
MD5 e76a8cab555a6c2835b542f6d676d31a
BLAKE2b-256 c3915940cf911dd7939259d2b5396caa81b2e44aa1754c1e10f43dbd53726bd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page