No project description provided
Project description
MistralAI Questionnaire
This project provides a toolkit for generating questionnaire from documents: [txt
, docx
, pdf
] to .csv
dataset format.
Requirements
Before starting, you need to install the following libraries: .. code-block:: python
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
langchain
langchain_community
langchain-huggingface
playwright
html2text
sentence_transformers
faiss-cpu
pandas
peft==0.4.0
trl==0.4.7
pypdf
bitsandbytes
accelerate
Description
ModelManager
This class is responsible for loading mistralai model and generating QA.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, model_name)
- **model_name**: The path or name of the pre-trained model.
Methods
^^^^^^^
- **setup_tokenizer()**: Loads and configures the tokenizer for the model.
- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).
- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.
- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.
- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.
Usage
-----
To start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
from questionnaire_mistral.models import ModelManager
model = ModelManager(model_name="path_to_model")
model(document=document, task=task, document_content=document_content, task_count=task_count)
License
-------
The project is distributed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for questionnaire_mistral-0.2.5.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e7b820bc054b22e079aaacd7f6783db512779bc3e0a40e583b224eae940dd53 |
|
MD5 | fe80b4722c27a6f79532d438e406eebd |
|
BLAKE2b-256 | df28c0d00408ef7f99a3d42655e5e79a122a36a9f240ff017c553d3844d450b4 |
Close
Hashes for questionnaire_mistral-0.2.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbdabf8ea4ecb02b1a6c6fb46425d01aa39d7d815f4014aa627631b91db08402 |
|
MD5 | c2c8599bb635c0d6ee8e24c4ecaf9022 |
|
BLAKE2b-256 | 7f101604125c63a2b4549027c09f2fb5d1a6b92e85a4a66d96fdce1f2a7c2c61 |