No project description provided
Project description
MistralAI Questionnaire
This project provides a toolkit for generating questionnaire from documents: [txt
, docx
, pdf
] to .csv
dataset format.
Requirements
Before starting, you need to install the following libraries: .. code-block:: python
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
langchain
langchain_community
langchain-huggingface
playwright
html2text
sentence_transformers
faiss-cpu
pandas
peft==0.4.0
trl==0.4.7
pypdf
bitsandbytes
accelerate
Description
ModelManager
This class is responsible for loading mistralai model and generating QA.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, model_name)
- **model_name**: The path or name of the pre-trained model.
Methods
^^^^^^^
- **setup_tokenizer()**: Loads and configures the tokenizer for the model.
- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).
- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.
- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.
- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.
Usage
-----
To start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
from questionnaire_mistral.models import ModelManager
model = ModelManager(model_name="path_to_model")
model(document=document, task=task, document_content=document_content, task_count=task_count)
License
-------
The project is distributed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for questionnaire_mistral-1.4.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 924324f777ddc0ee29181aae8c6bc52e81a4c894d9c0c648e768074a104ce537 |
|
MD5 | 257399d26b6350966246d35ca9fcbf9c |
|
BLAKE2b-256 | 9cca06c8147b5d0a36812922b19f0ae6a6b833dcaf8a7542983eaf0ffb4c180f |
Close
Hashes for questionnaire_mistral-1.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62651a0481ed446a9d896b17355aed39932f2624acdd6a696ba0862a2890d706 |
|
MD5 | 68f3a5c8caa32feab6f632a4e34f080c |
|
BLAKE2b-256 | f6714ca976b909e17b9bbad9edc21ee107cf746d8d4f8fe0560d5193180c7530 |