No project description provided
Project description
MistralAI Questionnaire
This project provides a toolkit for generating questionnaire from documents: [txt
, docx
, pdf
] to .csv
dataset format.
Requirements
Before starting, you need to install the following libraries: .. code-block:: python
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
langchain
langchain_community
langchain-huggingface
playwright
html2text
sentence_transformers
faiss-cpu
pandas
peft==0.4.0
trl==0.4.7
pypdf
bitsandbytes
accelerate
Description
ModelManager
This class is responsible for loading mistralai model and generating QA.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, model_name)
- **model_name**: The path or name of the pre-trained model.
Methods
^^^^^^^
- **setup_tokenizer()**: Loads and configures the tokenizer for the model.
- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).
- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.
- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.
- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.
Usage
-----
To start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
from questionnaire_mistral.models import ModelManager
model = ModelManager(model_name="path_to_model")
model(document=document, task=task, document_content=document_content, task_count=task_count)
License
-------
The project is distributed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for questionnaire_mistral-2.0.dev0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 698aa927599fc4acd9842028eb35d4ff4895aaf8712fc0476da2b8baf25a525c |
|
MD5 | a47f852dee38995bd90304dffb94c610 |
|
BLAKE2b-256 | 2dce0d772d1c74e697dfaf75551eccbc71aa475065e6a503cb50c2b9a3464685 |
Close
Hashes for questionnaire_mistral-2.0.dev0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58ffbce733c9902163eac14ac8878cc1f9b014490282cc5e954a5eca6c09eb96 |
|
MD5 | 6ab7231b58471c7b58473887160ff835 |
|
BLAKE2b-256 | b8ffb34871732771ab5b7b72bd18e4c4f3eb633a0eecb72fc5053d3b5d1355a2 |