No project description provided
Project description
MistralAI Questionnaire
This project provides a toolkit for generating questionnaire from documents: [txt
, docx
, pdf
] to .csv
dataset format.
Requirements
Before starting, you need to install the following libraries: .. code-block:: python
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
langchain
langchain_community
langchain-huggingface
playwright
html2text
sentence_transformers
faiss-cpu
pandas
peft==0.4.0
trl==0.4.7
pypdf
bitsandbytes
accelerate
Description
ModelManager
This class is responsible for loading mistralai model and generating QA.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, model_name)
- **model_name**: The path or name of the pre-trained model.
Methods
^^^^^^^
- **setup_tokenizer()**: Loads and configures the tokenizer for the model.
- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).
- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.
- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.
- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.
Usage
-----
To start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
from questionnaire_mistral.models import ModelManager
model = ModelManager(model_name="path_to_model")
model(document=document, task=task, document_content=document_content, task_count=task_count)
License
-------
The project is distributed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
questionnaire_mistral-2.4.tar.gz
(10.3 kB
view hashes)
Built Distribution
Close
Hashes for questionnaire_mistral-2.4.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7ec89a9b3166a0cd34fd1b9e92d8acce6a3c34755cdb9740b4416077479ddb4 |
|
MD5 | ccaca4b39e87cb8c9daf9d5d70e2bb8e |
|
BLAKE2b-256 | e56085a90768dcc851e62d6963c03ae2dc927340235c4667c8ac961bb8b65af2 |
Close
Hashes for questionnaire_mistral-2.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 635abc60fe6eddaefb49c66a03be0859ace75f70b4970783d3a6fede6d7fbb51 |
|
MD5 | e685e9e3c08a14d264ab3ea00d2117db |
|
BLAKE2b-256 | 116995267b2830849ff333045a69b610546eac33d05b07ca1cb3c485ca1242d2 |