No project description provided
Project description
MistralAI Questionnaire
This project provides a toolkit for generating questionnaire from documents: [txt
, docx
, pdf
] to .csv
dataset format.
Requirements
Before starting, you need to install the following libraries: .. code-block:: python
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
langchain
langchain_community
langchain-huggingface
playwright
html2text
sentence_transformers
faiss-cpu
pandas
peft==0.4.0
trl==0.4.7
pypdf
bitsandbytes
accelerate
Description
ModelManager
This class is responsible for loading mistralai model and generating QA.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, model_name)
- **model_name**: The path or name of the pre-trained model.
Methods
^^^^^^^
- **setup_tokenizer()**: Loads and configures the tokenizer for the model.
- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).
- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.
- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.
- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.
Usage
-----
To start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
from questionnaire_mistral.models import ModelManager
model = ModelManager(model_name="path_to_model")
model(document=document, task=task, document_content=document_content, task_count=task_count)
License
-------
The project is distributed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
questionnaire_mistral-2.6.tar.gz
(10.5 kB
view hashes)
Built Distribution
Close
Hashes for questionnaire_mistral-2.6.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 836ada4a3d34dd02a9de3a42bce9efa9619198366f9945908d814fbf6254c67c |
|
MD5 | 2b6cc7a1a171d31ec07dce9e9a83b7a8 |
|
BLAKE2b-256 | c4a0424e311a202093862f86f440735454aaf022fd28ea4bb6db2c71dbd7d1e9 |
Close
Hashes for questionnaire_mistral-2.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2fc09c49b62ffef5a7908fa6021190c832221d94e6e1a807a72eccbf8281512b |
|
MD5 | f862dbdbd96e9a7eaf59a4580e8030a9 |
|
BLAKE2b-256 | 10b934b2d4e76898795ce00202fc95e0f23c441e20e6370c54204f23c14dec30 |