Read and write CSV or TXT files in a simple manner
Project description
Quick CSV
Read and write small or large CSV/TXT files in a simple manner
Installation
pip install quick-csv
Examples for small files
Example 1: read and write csv or txt files
from quickcsv.file import *
# read a csv file
list_model=read_csv('data/test.csv')
for idx,model in enumerate(list_model):
print(model)
list_model[idx]['id']=idx
# save a csv file
write_csv('data/test1.csv',list_model)
# write a text file
write_text('data/text1.txt',"Hello World!")
# read a text file
print(read_text('data/text1.txt'))
Example 2: create dataframe from a list of models
from quickcsv.file import *
# read a csv file
list_model=read_csv('data/test.csv')
# create a dataframe from list_model
df=create_df(list_model)
# print
print(df)
Examples for large files
Example 1: read large csv file
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_atui_rels.csv" # a large file (>500 MB)
total_count=0
def process_partition(part_df,i):
print(f"Part {i}")
def process_row(row,i):
global total_count
print(i)
total_count+=1
list_results=read_large_csv(csv_file=csv_path,row_func=process_row,partition_func=process_partition)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
Example 2: query from a large csv file
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_sui_nodes.csv" # a large file (>500 MB)
total_count=0
# process each partition in the large file
def process_partition(part_df,i):
print(f"Part {i}")
print()
# process each row in a partition while reading
def process_row(row,i):
global total_count
print(row)
total_count+=1
# field is a field in the csv file, and value is the value you need to find within the csv file
list_results=read_large_csv(csv_file=csv_path, field="SUI",value="S0000004", append_row=True, row_func=process_row,partition_func=process_partition)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
Example 3: read top N records from the large csv file
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_atui_rels.csv"
total_count=0
# return top 10 rows in the csv file
list_results=read_large_csv(csv_file=csv_path,head_num=10)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
License
The quick-csv
project is provided by Donghua Chen.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
quick-csv-0.0.4.tar.gz
(12.6 kB
view details)
Built Distribution
quick_csv-0.0.4-py3-none-any.whl
(11.8 kB
view details)
File details
Details for the file quick-csv-0.0.4.tar.gz
.
File metadata
- Download URL: quick-csv-0.0.4.tar.gz
- Upload date:
- Size: 12.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5fbf4af507032618f3e3d15110d11ba544e2850fd47ba8f38aba49d268d8b58 |
|
MD5 | 580f1e27c8e326a6c372795cc766775c |
|
BLAKE2b-256 | 48f0853a0d5ee30be33291b5456c7607b792b13dde49c3e1286e48d56c4e698f |
Provenance
File details
Details for the file quick_csv-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: quick_csv-0.0.4-py3-none-any.whl
- Upload date:
- Size: 11.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d25e8ed426f1cf1ee077685bfeeced5452ce63db6dfeb0aeb560c379de1e22d3 |
|
MD5 | 81d92555887a742991c69cb38080365e |
|
BLAKE2b-256 | 496ca8f02659e6840340836253036eb2af85be712a0293936ef3fa0c3276f2ad |