The quick-topic toolkit allows us to quickly analyze topic models in various methods.
Project description
Quick Topic Modeling Toolkit
The quick-topic
toolkit allows us to quickly evaluate topic models in various methods.
Functions
- Topic Prevalence Trends Analysis
- Topic Interaction Strength Analysis
- Topic Transition Analysis
Usage
Example 1: Topic Prevalence over Time
from quick_topic.topic_prevalence.main import *
# data file: a csv file; a folder with txt files named
# the same as the ID field in the csv file
meta_csv_file = "../datasets/list_company_news_meta.csv"
text_root = r"../datasets/text_data_processed2"
# word segmentation data files
list_keywords_path = [
"../datasets/keywords/countries.csv",
"../datasets/keywords/leaders_unique_names.csv",
"../datasets/keywords/carbon2.csv"
]
# remove keywords
stop_words_path = "../datasets/stopwords/hit_stopwords.txt"
# date range for analysis
start_year=2000
end_year=2021
# used topics
label_names = ['经济主题', '能源主题', '公众主题', '政府主题']
topic_economics = ['投资', '融资', '经济', '租金', '政府', '就业', '岗位', '工作', '职业', '技能']
topic_energy = ['绿色', '排放', '氢能', '生物能', '天然气', '风能', '石油', '煤炭', '电力', '能源', '消耗', '矿产', '燃料', '电网', '发电']
topic_people = ['健康', '空气污染', '家庭', '能源支出', '行为', '价格', '空气排放物', '死亡', '烹饪', '支出', '可再生', '液化石油气', '污染物', '回收',
'收入', '公民', '民众']
topic_government = ['安全', '能源安全', '石油安全', '天然气安全', '电力安全', '基础设施', '零售业', '国际合作', '税收', '电网', '出口', '输电', '电网扩建',
'政府', '规模经济']
list_topics = [
topic_economics,
topic_energy,
topic_people,
topic_government
]
# run-all
run_topic_prevalence(
meta_csv_file=meta_csv_file,
raw_text_folder=text_root,
save_root_folder="results/target1",
list_keywords_path=list_keywords_path,
stop_words_path=stop_words_path,
start_year=start_year,
end_year=end_year,
label_names=label_names,
list_topics=list_topics
)
Example 2: Estimate the strength of topic interaction (shared keywords) from different topics
from quick_topic.topic_interaction.main import *
# step 1: data file
meta_csv_file = "../datasets/list_company_news_meta.csv"
text_root = r"D:\UIBE科研\国自科青年\开源项目\autobr\examples-industry\datasets\company\text_data_processed2"
# step2: jieba cut words file
list_keywords_path = [
"../datasets/keywords/countries.csv",
"../datasets/keywords/leaders_unique_names.csv",
"../datasets/keywords/carbon2.csv"
]
# remove files
stopwords_path = "../datasets/stopwords/hit_stopwords.txt"
# set predefined topic labels
label_names = ['经济主题', '能源主题', '公众主题', '政府主题']
# set keywords for each topic
topic_economics = ['投资', '融资', '经济', '租金', '政府', '就业', '岗位', '工作', '职业', '技能']
topic_energy = ['绿色', '排放', '氢能', '生物能', '天然气', '风能', '石油', '煤炭', '电力', '能源', '消耗', '矿产', '燃料', '电网', '发电']
topic_people = ['健康', '空气污染', '家庭', '能源支出', '行为', '价格', '空气排放物', '死亡', '烹饪', '支出', '可再生', '液化石油气', '污染物', '回收',
'收入', '公民', '民众']
topic_government = ['安全', '能源安全', '石油安全', '天然气安全', '电力安全', '基础设施', '零售业', '国际合作', '税收', '电网', '出口', '输电', '电网扩建',
'政府', '规模经济']
# a list of topics above
list_topics = [
topic_economics,
topic_energy,
topic_people,
topic_government
]
# if any keyword is the below one, then the keyword is removed from our consideration
filter_words = ['中国', '国家', '工作', '领域', '社会', '发展', '目标', '全国', '方式', '技术', '产业', '全球', '生活', '行动', '服务', '君联',
'研究', '利用', '意见']
# run shell
run_topic_interaction(
meta_csv_file=meta_csv_file,
raw_text_folder=text_root,
output_folder="results/target1/divided",
category_csv_file='keywords_companies.csv',
stopwords_path="../datasets/stopwords/hit_stopwords.txt",
weights_folder='results/target1/weights',
list_keywords_path=list_keywords_path,
label_names=label_names,
list_topics=list_topics,
filter_words=filter_words
)
Example 3: Divide datasets by year or year-month
By year:
from quick_topic.topic_transition.divide_by_year import *
divide_by_year(
meta_csv_file="../datasets/list_g20_news_all_clean.csv",
raw_text_folder=r"D:\UIBE科研\国自科青年\开源项目\carbon2-research\information_extraction2\datasets\g20_news_processed",
output_folder="results/test1/divided_by_year",
start_year=2000,
end_year=2021
)
By year-month:
from quick_topic.topic_transition.divide_by_year_month import *
divide_by_year_month(
meta_csv_file="../datasets/list_g20_news_all_clean.csv",
raw_text_folder=r"D:\UIBE科研\国自科青年\开源项目\carbon2-research\information_extraction2\datasets\g20_news_processed",
output_folder="results/test1/divided_by_year_month",
start_year=2000,
end_year=2021
)
Example 4: Show topic transition by year
from quick_topic.topic_transition.transition_by_year_month_topic import *
label="经济"
keywords=['投资','融资','经济','租金','政府', '就业','岗位','工作','职业','技能']
show_transition_by_year_month_topic(
root_path="results/test1/divided_by_year_month",
label=label,
keywords=keywords,
start_year=2000,
end_year=2021
)
Example 5: Show keyword-based topic transition by year-month for keywords in addition to mean lines
from quick_topic.topic_transition.transition_by_year_month_term import *
root_path = "results/news_by_year_month"
select_keywords = ['燃煤', '储能', '电动汽车', '氢能', '脱碳', '风电', '水电', '天然气', '光伏', '可再生', '清洁能源', '核电']
list_all_range = [
[[2010, 2015], [2016, 2021]],
[[2011, 2017], [2018, 2021]],
[[2009, 2017], [2018, 2021]],
[[2011, 2016], [2017, 2021]],
[[2017, 2018], [2019, 2021]],
[[2009, 2014], [2015, 2021]],
[[2009, 2014], [2015, 2021]],
[[2009, 2015], [2016, 2021]],
[[2008, 2011], [2012, 2015], [2016, 2021]],
[[2011, 2016], [2017, 2021]],
[[2009, 2012], [2013, 2016], [2017, 2021]],
[[2009, 2015], [2016, 2021]]
]
output_figure_folder="results/figures"
show_transition_by_year_month_term(
root_path="results/test1/divided_by_year_month",
select_keywords=select_keywords,
list_all_range=list_all_range,
output_figure_folder=output_figure_folder,
start_year=2000,
end_year=2021
)
License
The quick-topic
toolkit is provided by Donghua Chen with MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file quick-topic-0.0.2.tar.gz
.
File metadata
- Download URL: quick-topic-0.0.2.tar.gz
- Upload date:
- Size: 28.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78aeb40cbd9ad182c3f9009aff94e316561a1829ff75b005b3defa751864caa5 |
|
MD5 | 8197475494336390305420daa29c6c4b |
|
BLAKE2b-256 | 2006707f73307ad722f44e7fb64c8feab464b09c2df3879da0e7a9685a97c606 |
File details
Details for the file quick_topic-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: quick_topic-0.0.2-py3-none-any.whl
- Upload date:
- Size: 41.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29e08fc34e5666d622107224885bc0147c58541a9a38dcb10186fe3b76749529 |
|
MD5 | 56aeef8ce8ddb215c6dab4b35f8d282a |
|
BLAKE2b-256 | 853e04e6470ab1eec8e14223daa0fb33c66dbbe889d229f3312aa3011e686848 |