Skip to main content

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Project description

QuickAI logo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Announcement video https://www.youtube.com/watch?v=kK46sJphjIs

Demo https://deepnote.com/project/QuickAI-1r_4zvlyQMa2USJrIvB-kA/%2Fnotebook.ipynb

Motivation

When I started to get into more advanced Machine Learning, I started to see how these famous neural network architectures(such as EfficientNet), were doing amazing things. However, when I tried to implement these architectures to problems that I wanted to solve, I realized that it was not super easy to implement and quickly experiment with these architectures. That is where QuickAI came in. It allows for easy experimentation of many model architectures quickly.

Dependencies:

Tensorflow, PyTorch, Sklearn, Matplotlib, Numpy, and Hugging Face Transformers. You should install TensorFlow and PyTorch following the instructions from their respective websites.

Why you should use QuickAI

QuickAI can reduce what would take tens of lines of code into 1-2 lines. This makes fast experimentation very easy and clean. For example, if you wanted to train EfficientNet on your own dataset, you would have to manually write the data loading, preprocessing, model definition and training code, which would be many lines of code. Whereas, with QuickAI, all of these steps happens automatically with just 1-2 lines of code.

The following models are currently supported:

  1. Image Classification

    • EfficientNet B0-B7
    • VGG16
    • VGG19
    • DenseNet121
    • DenseNet169
    • DenseNet201
    • Inception ResNet V2
    • Inception V3
    • MobileNet
    • MobileNet V2
    • MobileNet V3 Small & Large
    • ResNet 101
    • ResNet 101 V2
    • ResNet 152
    • ResNet 152 V2
    • ResNet 50
    • ResNet 50 V2
    • Xception
  2. Natural Language Processing

    • GPT-NEO 125M(Generation, Inference)
    • GPT-NEO 350M(Generation, Inference)
    • GPT-NEO 1.3B(Generation, Inference)
    • GPT-NEO 2.7B(Generation, Inference)
    • Distill BERT Cased(Q&A, Inference and Fine Tuning)
    • Distill BERT Uncased(Named Entity Recognition, Inference)
    • Distil BART (Summarization, Inference)
    • Distill BERT Uncased(Sentiment Analysis & Text/Token Classification, Inference and Fine Tuning)
  3. Object Detection

    • YOLOV4
    • YOLOV4 Tiny

Installation

pip install quickAI

How to use

Please see the examples folder for details. For the YOLOV4, you can download weights from here. Full documentation is in the wiki section of the repo.

Issues/Questions

If you encounter any bugs, please open a new issue so they can be corrected. If you have general questions, please use the discussion section.

Credits

Most of the code for the YOLO implementations were taken from "The AI Guy's" tensorflow-yolov4-tflite & YOLOv4-Cloud-Tutorial repos. Without this, the YOLO implementation would not be possible. Thank you!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickai-2.0.0.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

quickai-2.0.0-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file quickai-2.0.0.tar.gz.

File metadata

  • Download URL: quickai-2.0.0.tar.gz
  • Upload date:
  • Size: 23.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for quickai-2.0.0.tar.gz
Algorithm Hash digest
SHA256 de1dfd381b74b08485ccce1c2c0727c0ee3054433d62bd9a3fd14c51e9159d52
MD5 7bf024a5f9e649e05d34bb05f1fc27cd
BLAKE2b-256 52db57b07ed34cef0547bf9e5863ee4d9a3d1649c51de95f5be3a5975ca6eb1b

See more details on using hashes here.

File details

Details for the file quickai-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: quickai-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 26.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for quickai-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 71515714ffba014410212fa5128f9053c0a8dcd53a2387198cd8963af851be37
MD5 3cc3fc1cb981bc8760ebedb824ac4dc0
BLAKE2b-256 6ef122eb604998c3f91838a3f98c9de0dc4a616e2741ac17c6be0ccf00c9e340

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page