Skip to main content

Simple & Easy-to-use python modules to perform Quick Exploratory Data Analysis for any structured dataset!

Project description

Quick-EDA

Simple & Easy-to-use python modules to perform Quick Exploratory Data Analysis for any structured dataset!

QuickDA

Getting Started

You will need to have Python 3 and Jupyter Notebook installed in your local system. Once installed, clone this repository to your local to get the project structure setup.

git clone https://github.com/sid-the-coder/QuickDA.git

You will also need to install few python package dependencies in your evironment to get started. You can do this by:

pip3 install -r requirements.txt

OR you can also install the package from PyPi Index using the pip installer:

pip3 install quickda

Table of Contents

  1. Data Exploration - explore(data)

    • data: pd.DataFrame
    • method: string, default="summarize"
      • "summarize" : Generates a summary statistics of the dataset
      • "profile" : Generates a HTML Report of the Dataset Profile
    • report_name: string, default="Dataset Report"
      • Parameter to customise the generated report name
    • is_large_dataset: Boolean, default=False
      • Parameter set to True explicitly to flag, in case of a large dataset
  2. Data Cleaning - clean(data) : [Returns DataFrame]

    • data: pd.DataFrame
    • method: string, default="default"
      • "default" : Standardizes column names, Removes duplicates rows and Drops missing values
      • "standardize" : Standardizes column names
      • "dropcols" : Drops columns specified by the user
      • "duplicates" : Removes duplicate rows
      • "replaceval" : Replaces a value in dataframe with new value specified by the user
      • "fillmissing" : Interpolates all columns with missing values using forward filling
      • "dropmissing" : Drops all rows with missing values
      • "cardinality" : Reduces Cardinality of a column given a threshold
      • "dtypes" : Explicitly converts the Data Types as specified by the user
      • "outliers" : Removes all outliers in data using IQR method
    • columns: list/string, default=[]
      • Parameter to specify column names in the DataFrame
    • dtype: string, default="numeric"
      • "numeric" : Converts columns dtype to numeric
      • "category" : Converts columns dtype to category
      • "datetime" : Converts columns dtype to datetime
    • to_replace: string/integer/regex, default=""
      • Parameter to pass a value to replace in the DataFrane
    • value: string/integer/regex, default=np.nan
      • Parameter to pass a new value that replaces an old value in the Dataframe
    • threshold: float, default=0
      • Parameter to set threshold in the range of [0,1] for cardinality
  3. EDA Numerical Features - eda_num(data)

    • data: pd.DataFrame
    • method: string, default="default"
      • "default" : Shows all Outlier & Distribution Analysis via BoxPlots & Histograms
      • "correlation" : Gets the correlation matrix between all numerical features
    • bins: integer, default=10
      • Parameter to set the number of bins while displaying histograms
  4. EDA Categorical Features - eda_cat(data, x)

    • data: pd.DataFrame
    • x: string, First Categorical Type Column Name
    • y: string, default=None
      • Parameter to pass the Second Categorical Type Column Name
    • method: string, default="default"
      • "default" : Shows category count plot & summarizes it in a frequency table
  5. EDA Numerical with Categorical Features - eda_numcat(data, x, y)

    • data: pd.DataFrame
    • x: string/list, Numeric/Categorical Type Column Name(s)
    • y: string/list, Numeric/Categorical Type Column Name(s)
    • method: string, default="pps"
      • "pps" : Calculates Predictive Power Score Matrix
      • "relationship" : Shows Scatterplot of given features
      • "comparison" : Shows violin plots to compare categories across numerical features
      • "pivot" : Generates pivot table using column names, values and aggregation function
    • hue: string, default=None
      • Parameter to visualise a categorical Type feature within scatterplots
    • values: string/list, default=None
      • Parameter to set columns to aggregate on pivot views
    • aggfunc: string, default="mean"
      • Parameter to set aggregate functions on pivot tables
      • Example: 'min', 'max', 'mean', 'median', 'sum', 'count'
  6. EDA Time Series Data - eda_timeseries(data, x, y)

    • data: pd.DataFrame
    • x: string, Datetime Type Column Name
    • y: string, Numeric Type Column Name

Upcoming Work

  1. Basic Preprocessing for Text Data - Tokenization, Normalization, Noise Removal, Lemmatization
  2. EDA for Text Data - NGrams, POS tagging, Word Cloud, Sentiment Analysis
  3. Quick Insight Generation for all EDA steps - Generate easy-to-read textual insights

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickda-0.2.2.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

quickda-0.2.2-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file quickda-0.2.2.tar.gz.

File metadata

  • Download URL: quickda-0.2.2.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4

File hashes

Hashes for quickda-0.2.2.tar.gz
Algorithm Hash digest
SHA256 de0c36e291876f87d096ba9ca3c51f63422cdbce1fc7905f700afad94aa49d65
MD5 86eaf3fc1fbdc204a68ee78e99ffd887
BLAKE2b-256 fcc856a74b440d8cd43ae7a6581894ca5ac888b22da9d494f709bc6ef47d2bc1

See more details on using hashes here.

File details

Details for the file quickda-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: quickda-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4

File hashes

Hashes for quickda-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 47963c27d3a57d9c3e43555e1ec4ebb2cd64f523fa7cca3d7f34a48156d5cffc
MD5 762148208c6db9c5cc2141dfcacfaf6d
BLAKE2b-256 a4c3b6dafb22c6393b5e3a61339606f01aea0eb2de4ee3408f4170e57f4105ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page