Skip to main content

No project description provided

Project description

Trusty

Trusty is a high-performance Rust library with Python bindings (quickgrove) library for loading and running pre-trained XGBoost models. Built with Rust and Python bindings, it provides efficient model inference with native Apache Arrow integration and is designed for being used in Database UDFs (see trusty-examples/datafusion_udf.rs).

[!CAUTION] This library is currently in experimental status. The codebase is underway a name change from trusty -> quickgrove

Key Features

  • Dynamic XGBoost Model Loading: Load pre-trained XGBoost models without recompilation
  • Apache Arrow Integration: Native support for Arrow RecordBatches for efficient inference
  • Tree Pruning: Dynamic tree modification capabilities with predicate-based pruning
  • High Performance: Rust-powered inference with hardware prefetching and efficient Tree Node data structure
  • Memory Efficiency: Configurable batch processing with tree and row chunking

Quick Start

import quickgrove
import pandas as pd
import pyarrow as pa
from quickgrove import Feature

# Load a pre-trained XGBoost model
model = quickgrove.json_load("model.json")

# Convert pandas DataFrame to Arrow RecordBatch
df = pd.read_csv("data.csv")
batch = pa.RecordBatch.from_pandas(df)

# Make predictions
predictions = model.predict_batches([batch])

# Inspect model structure
print(model)
>>> Total number of trees: 100
>>> Average tree depth: 7.00
>>> Max tree depth: 7
>>> Total number of nodes: 9546

# Inspect individual trees
print(model.tree_info(0))

Rust Usage

If you prefer to use the core Rust library directly:

use trusty::{
    GradientBoostedDecisionTrees,
    PredictorConfig,
    Feature,
    Predicate,
    Condition,
};
use arrow::record_batch::RecordBatch;
use std::collections::HashMap;

fn main() -> Result<(), Box<dyn Error>> {
    // Load model from JSON file
    let model = GradientBoostedDecisionTrees::json_load("model.json")?;
    
    // Configure prediction parameters
    model.set_config(PredictorConfig {
        row_chunk_size: 64,     // Process 64 rows at a time
        tree_chunk_size: 8      // Process 8 trees at a time
    });
    
    // Create predicate for pruning
    let mut predicate = Predicate::new();
    predicate.add_condition(
        "carat".to_string(), 
        Condition::LessThan(0.2)
    );
    
    // Prune the model
    let pruned_model = model.prune(&predicate);
    
    // Make predictions on Arrow RecordBatch
    let predictions = pruned_model.predict_batches(&[batch])?;
    
    // Get model insights
    println!("Number of trees: {}", pruned_model.num_trees());
    println!("Tree depths: {:?}", pruned_model.tree_depths());
    println!("Required features: {:?}", pruned_model.get_required_features());
    
    Ok(())
}

Cargo.toml

[dependencies]
trusty = { git = "https://github.com/letsql/trusty" }

Tree Pruning

# Create pruning predicates
predicates = [Feature("carat") < 0.2]  # Remove paths where carat >= 0.2

# Prune model
pruned_model = model.prune(predicates)

# Make predictions with pruned model
predictions = pruned_model.predict_batches([batch])

Performance Configuration

# Configure batch processing
model.set_config({
    'row_chunk_size': 64,    # Process 64 rows at a time
    'tree_chunk_size': 8     # Process 8 trees at a time
})

# Memory-efficient prediction for large datasets
for batch in pa.RecordBatchStreamReader('large_dataset.arrow'):
    predictions = model.predict_batches([batch])

Model Inspection

# View model statistics
print(model.tree_depths())    # Depths of all trees
print(model.num_nodes())      # Total number of nodes

# Inspect specific trees
tree = model.tree_info(1)     # Get detailed view of second tree

Under the Hood

quickgrove uses Rust for its core functionality, providing:

  • Fast model loading and inference
  • Schema validation with column names for batches
  • Efficient memory management
  • Native Arrow integration
  • SIMD operations where applicable
  • Configurable batch processing

Data Type Support

Supports XGBoost models with features of type:

  • Float32/Float64: For continuous features
  • Int64: For integer features
  • Boolean: For binary indicators

All numeric features are internally processed as Float32 for optimal performance.

Development Roadmap

Model Support

  • XGBoost reg:squarederror
  • XGBoost reg:logistic
  • XGBoost binary:logistic
  • XGBoost ranking objectives
    • pairwise
    • ndcg
    • map
  • Support categorical feature type
  • LightGBM integration
  • CatBoost integration

Core Development

  • Python interface layer
  • Extended preprocessing capabilities

Contributing

Contributions welcome. Please review open issues and submit PRs.

License

MIT Licensed. See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickgrove-0.1.4.tar.gz (2.3 MB view details)

Uploaded Source

Built Distributions

quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (2.6 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ ARM64

quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

quickgrove-0.1.4-cp313-cp313-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.13Windows x86-64

quickgrove-0.1.4-cp313-cp313-win32.whl (2.0 MB view details)

Uploaded CPython 3.13Windows x86

quickgrove-0.1.4-cp313-cp313-manylinux_2_28_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

quickgrove-0.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

quickgrove-0.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686

quickgrove-0.1.4-cp313-cp313-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

quickgrove-0.1.4-cp313-cp313-macosx_10_12_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.13macOS 10.12+ x86-64

quickgrove-0.1.4-cp312-cp312-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.12Windows x86-64

quickgrove-0.1.4-cp312-cp312-win32.whl (2.0 MB view details)

Uploaded CPython 3.12Windows x86

quickgrove-0.1.4-cp312-cp312-manylinux_2_28_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

quickgrove-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

quickgrove-0.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

quickgrove-0.1.4-cp312-cp312-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

quickgrove-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

quickgrove-0.1.4-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11Windows x86-64

quickgrove-0.1.4-cp311-cp311-win32.whl (2.0 MB view details)

Uploaded CPython 3.11Windows x86

quickgrove-0.1.4-cp311-cp311-manylinux_2_28_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

quickgrove-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

quickgrove-0.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

quickgrove-0.1.4-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

quickgrove-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

quickgrove-0.1.4-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10Windows x86-64

quickgrove-0.1.4-cp310-cp310-win32.whl (2.0 MB view details)

Uploaded CPython 3.10Windows x86

quickgrove-0.1.4-cp310-cp310-manylinux_2_28_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

quickgrove-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

quickgrove-0.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

quickgrove-0.1.4-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

quickgrove-0.1.4-cp310-cp310-macosx_10_12_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

File details

Details for the file quickgrove-0.1.4.tar.gz.

File metadata

  • Download URL: quickgrove-0.1.4.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.2

File hashes

Hashes for quickgrove-0.1.4.tar.gz
Algorithm Hash digest
SHA256 ddd0fcb9f738e3650084ef188a3a8f456b017f6a10330dd21906ed51618d04fd
MD5 3813c9575ac0bb59571262968cd6889a
BLAKE2b-256 791c9b01483a9b52919bd8975b51287735d328391b584d01963d44cd75ce1ad8

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e71e4314e049efc5a33f08587e13043e6369377cfa0c64dabdee0da99c65d668
MD5 fa81ad0438bab710e6ecad04b20b6687
BLAKE2b-256 39656cabd2a941c3fe40a0743a25270797fdd99edb22a84d53981850421b0779

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4cf6f35ef65e28ea20379468e969fc61c8524809b148322f7c9f0a1ef70ca980
MD5 e2a21ee892d7fa7a895a3fb652a811f2
BLAKE2b-256 6fb3bd0f51bd5ebf83e98d2d847a52b08939054ce0dce3b839ec054732a2ed1c

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6ea45f1a6ee78639081ba7774b1aea0d61016ee09d55005cb7ad54814057b5a0
MD5 8bbb11f7260af432ebcf1e275ac53273
BLAKE2b-256 f697674bb1bfb68fd02064c8ac7c7fe92546f33c4fc3dd4f4932cc14950b24d6

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3808477507bc3a4442d3f4a9e8775e08f2b8d58a2ebec1d227a9fd988723de08
MD5 a77f31d1f3d2ad0cebd6d9c9f1871a2b
BLAKE2b-256 e094729255739408687a8115d95222776cf5192b7d665132efaad9f9ba069121

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-win32.whl.

File metadata

  • Download URL: quickgrove-0.1.4-cp313-cp313-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.2

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 c63935075be4d089b52317cf82cd5e76cd02316749fb015090df97522a9a9cb2
MD5 42b9cf7e0888a2a75fb45cba45fe0abc
BLAKE2b-256 a59430c328770b882475316f02323534fd55b21cc25117b68c19c3b755ade8d7

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c8054254bb029451ebcb5ad9bdb8297b33b7b2863092935a054f73cc4a957a53
MD5 5f3e18cbc6633cbc259cef56f59b8c4d
BLAKE2b-256 7407f7b12cc78025b6be85e0e925906d54e72410b18ba9feff9e1573769db880

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f125721ae402b90e706a84a2c330c826dc927535dec9cc6b27ebfa8b1a5bc95
MD5 943dacca29fcbfcb8700e57e7cd31023
BLAKE2b-256 295dbbc100114975e2bbdf4c47fdcb101885946c55f99df0f50d052ca07eb0f6

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9e6bf68a4c4aa004fef8d57798574196a69d49f604bb77cd61ef48c629dfb093
MD5 8bbed90aa0949590e2cfbdcbf953f2b2
BLAKE2b-256 edde634b333489456c9cb106a2c95375f4eeb7cc00e5eb3877409ae1a9b0ef20

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d1bb309967eabda0e5731fdb0230ccdaee6a60727330b986c904c3e149d0902
MD5 5cbed4a75b3106b6bd99005d94a33924
BLAKE2b-256 5572b74c27a5722afbbaf70fcb6ce4ad73bff174ac539d6577e8f5647518fbcd

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 15d521c394618ebdc2138fbfae011456c5e97c8a48fa31020e0d1af8ffbb840f
MD5 d2726ae3edb629b8d87283569ab5c3e4
BLAKE2b-256 f5e712ca5f31579e9f3a2af01668ba61867cc6ab296485ded0cc32ebd2bb7c54

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a59aa540de5a0c6a4d3a474871af0f546255933d9d97a14b4c37c4bc96174d69
MD5 b4d14297783229908ecc20c5daed8f98
BLAKE2b-256 20082b75c4e6687aa9cf6c73858eb4742211ee08dba8f81566f91f41374f007e

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: quickgrove-0.1.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.2

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 cd083bed89c5f7fcc8e7123b49f791f8260b6c59ae7af7ef305094ac88d8fa48
MD5 737693a3fe66c43d1d4e9263e8812864
BLAKE2b-256 f224dd9c4d7210cfcf29f9b39189b99f39380d72810793d1fc005d11a19cea9b

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d86f2deae68f9331c4d7bc7f7388c81c56ef42db1039ab03ef70963ce8d8c5e4
MD5 5a01627a407c630aa75e39cff972e360
BLAKE2b-256 524456f3aa44de9d30ab68975c80c1b3be38308590b670b99194d8c89b9f9345

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec9028d3bd96712a04de54de5f2710c4ea12cb79a3718930ea216f0bff54fe89
MD5 ae4c196f06e14dcbbf931dc61033df48
BLAKE2b-256 32337a2d8f9021aad44f50b8b141d78b682986a378ff4d72f773cbcd70dafc18

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fce0512c8f0511a0f62ea3152d3f2cd6c5c4bbb6e4ae531d710325069fcabf1d
MD5 722519e6416c23aa2f6788365eb6a86d
BLAKE2b-256 d5a7b07eac000a5636ecff5c91fd1648122bf8906545d408367145c80f986b41

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5cc364996c3284a9eb07ebd4b0d71472331bf0d74af45f53c7a72caf8628bce6
MD5 02bd935f4a6476f0844ee504530da9d7
BLAKE2b-256 9b8c5c19902599346535e862c28c9a45f68bd620e4585c465034cd69ab81579e

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 038203d3bbd373c7b053f9b2826397562327c5e674dab622e938b5f491fe5047
MD5 7f149eabf40d250590503dc6227dba06
BLAKE2b-256 9841d329e28a3ac93be7dee9096032345da69d14ed9c67ef33604697ad85271c

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cb5ed5c752022120a005e90515115e2ba1ac95f72102fb7a6bfa257b53d24c0f
MD5 e070b35667b56ab076dcab8b30b085fb
BLAKE2b-256 a0abd61fbf8ff096ff0a3e27ef3e15f757b1e800bdf52533214203a2d2ed1f02

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: quickgrove-0.1.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.2

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9ab08159534e84152ab2452b4498d1ae8e4e12966edfd3b38a7531b4569ddbd2
MD5 0d1e1e1ae2a1818736137a3c4f70dcd1
BLAKE2b-256 203fcee06398c000e8c655eaeb14068463e82bb3b6fdba29175363f0a1be1e1e

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0deac211c7687387bdde2eeadb20702b34bcfa6a8a40c4a202312d7e178abc04
MD5 1842297399e9fdebd61952e06b2db4a2
BLAKE2b-256 2940c8cca9e9e795a677263ae04621cfcfa16188bd76dc8cccc4194d3a3c7cf0

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 602d6af03e3f6067d76a602bd09560ac92502e4bf3d5096a3d532f718bbecd95
MD5 ae52bc25158951be8fadd31e60c5e4ae
BLAKE2b-256 4b1f547cac0ad5a40f2da94d4c7a8d627311431d32557236f0b924f6f817e4aa

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0df1a236aaa2647bbfae37cce489be77b3bd94bf258e77a28773a278594fe1de
MD5 9ea5721d52f0a0922e4bee8461cc96d4
BLAKE2b-256 a5b22db28786444bf95179e31cc23dda1658c9e720384781936a0ca1ee508ddb

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f43a6b484946f871a3db6a597caf0d6ab787fdb273ee06db9d863a803942b18
MD5 ba9798ebb3703759e38d0a758fe164b2
BLAKE2b-256 3ce525dba6f0c8e8fdf6492144f61a78b5e89884b914b3c5ddabefb79a235434

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b19c40406198e0a617fe089f7dba7dbc2bd34945baeae4665c4f58344c1337fa
MD5 153686b26ea17418cf873072a1acbad5
BLAKE2b-256 92f4d1fbd89f8b1b9af1801aa884f2e5b18491eec4c3f4aa4d54c0554cf461c4

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c3c2117eae9b8ecc54337b485d6f72384a57b85feb1da7702393a7c3607cb235
MD5 9727120710d385c6a7b726bd210f9230
BLAKE2b-256 9e34e366b96d3ddaad1547cd4185fdd1846816466472303ba947a6e8168974f0

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: quickgrove-0.1.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.2

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e6167af8a6b7886746b2df46ee82d2528961036c1d41ae122494029687c67658
MD5 34f95f8af9bf1ae8573bae45f16517a1
BLAKE2b-256 ae45321edd4fb0a8c3fae4bd53959b9f863564771b917edc9e2b07cf28fbd124

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 98ee195e5c97161ed76c561579d6e651920e7be014dbd94d2002fb5f4a865969
MD5 dc645eaba820c890a275032e9c72c94e
BLAKE2b-256 709d5802894a917ca676ca54fcfa6e3a96fb7237dbfde7ce7583dc9a22f91186

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 009d6a7b8322a8b4e80d5a6d4c8bbdaa63357cc96d81cf42a584341656f25815
MD5 affc84265db2b4bab001d2f6d28bb096
BLAKE2b-256 a1bf69a2976fb04f36165736811b0232b3b9121c9324825879787d8ce53c18db

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 afa3f6e04ec88dde9bd1c6f3874bab4cdf370131a1fd32a38bb2438e1f68ab68
MD5 da28e7a794df18fb6ea9a3b48f439cfc
BLAKE2b-256 cee84a675c424f6a60a302b33ec601c58a1e6ccfa134b6aedf042ea1d42cfe7a

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be1b83d08866f235026cb7f69df992f49023577503cbd4ff592636dab9d2c38d
MD5 36a052f7e72ef40a26be7845cf19e1ef
BLAKE2b-256 69d8a2464cdc6a25ac8e0ec5db120b5f9964f0d8f276d65e6ab4c0316da087fe

See more details on using hashes here.

File details

Details for the file quickgrove-0.1.4-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for quickgrove-0.1.4-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6e887a2c63d4c15cba3e6e9486abd0f60e5a2c3ce6fb010c09e538d2327b721c
MD5 bcbc260c0455845e3f0fa4b3f66a47e0
BLAKE2b-256 69fade2990bd0e26179f12e794ca728f9702532d8def6c1b44c0140df140a85f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page