Skip to main content

A library for quick fine-tuning and interaction with popular language models

Project description

QuickLLM: Fast and Easy Fine-tuning for Popular Language Models

QuickLLM is a Python library that simplifies the process of fine-tuning and interacting with popular language models. With QuickLLM, you can quickly adapt pre-trained models to your specific tasks and chat with them effortlessly.

Features

  • Fine-tune popular language models on custom datasets
  • Optimize models for specific tasks like chat, code generation, or domain-specific conversations
  • Visualize model parameters and training progress
  • Interactive chat interface with fine-tuned models
  • Support for a wide range of popular language models

Installation

You can install QuickLLM using pip:

pip install quickllm

Quick Start

Here's a simple example to get you started with QuickLLM:

from quickllm import QuickLLM

# Initialize QuickLLM
llm = QuickLLM(model_name="gpt2", input_file="path/to/your/data.csv", output_dir="path/to/output")

# Fine-tune the model
llm.finetune(objective="chat", epochs=3, learning_rate=2e-5)

# Chat with the fine-tuned model
response = llm.chat("Hello, how are you?")
print(response)

# Visualize the model
llm.visualize()

# Start an interactive chat session
from quickllm.chat import start_chat_interface
start_chat_interface(llm.finetuned_model)

Supported Models

QuickLLM supports a wide range of popular language models. Here's a list of currently available models:

  1. GPT Family:

    • gpt2
    • gpt2-medium
    • gpt2-large
    • gpt2-xl
  2. LLaMA Family:

    • llama
    • llama2
    • llama2-7b
    • llama2-13b
    • llama2-70b
  3. BERT Family:

    • bert-base-uncased
    • bert-large-uncased
    • roberta-base
    • roberta-large
  4. T5 Family:

    • t5-small
    • t5-base
    • t5-large
  5. BART Family:

    • facebook/bart-base
    • facebook/bart-large
  6. GPT-Neo Family:

    • EleutherAI/gpt-neo-125M
    • EleutherAI/gpt-neo-1.3B
    • EleutherAI/gpt-neo-2.7B
  7. GPT-J Family:

    • EleutherAI/gpt-j-6B
  8. OPT Family:

    • facebook/opt-125m
    • facebook/opt-350m
    • facebook/opt-1.3b
  9. BLOOM Family:

    • bigscience/bloom-560m
    • bigscience/bloom-1b1
    • bigscience/bloom-1b7
  10. Other Models:

    • microsoft/DialoGPT-medium
    • facebook/blenderbot-400M-distill

You can use any of these models by specifying the model name when initializing QuickLLM. More comming soon

Fine-tuning Objectives

QuickLLM supports different fine-tuning objectives to optimize the model for specific tasks:

  • chat: General conversational fine-tuning
  • code: Optimize for code generation tasks
  • specific_chat: Fine-tune for domain-specific conversations based on your input data

Visualization

QuickLLM provides built-in visualization tools to help you understand your fine-tuned model:

  • Model architecture visualization
  • Parameter size distribution
  • Training loss curves (if available)

Contributing

We welcome contributions to QuickLLM! Please feel free to submit issues, fork the repository and send pull requests!

License

QuickLLM is released under the MIT License. See the LICENSE file for more details.

Contact

If you have any questions, feel free to reach out to me at supersidhant10@gmail.com or open an issue on our GitHub repository.

Happy fine-tuning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickllm-0.1.6.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

quickllm-0.1.6-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file quickllm-0.1.6.tar.gz.

File metadata

  • Download URL: quickllm-0.1.6.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for quickllm-0.1.6.tar.gz
Algorithm Hash digest
SHA256 1d182b59359aabd4c93fef1ea24f9ef635ca57736b05022e49bc08c1de4d610b
MD5 7bfe3a6ca9f5d79f578fc28bb2c10b12
BLAKE2b-256 4b8079b11eb949d02df470fb3cc71f5bd0ef20a442839f6524c03bc766d37fc0

See more details on using hashes here.

File details

Details for the file quickllm-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: quickllm-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for quickllm-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a71f60ecc68110056afee64d9ddf90fcedbec78d90c9f73a33593c2b68b9de99
MD5 281c0ff8d836dcbdf33ecd9c7539bb64
BLAKE2b-256 0741b1ffa8caa33d9b6fe41f5badb1fb5e929c49ce45e7cd9fe7225a99043af5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page