Instantly generate common EDA plots without cleaning your DataFrame
Project description
Instant EDA
Instantly generate common exploratory data plots without having to worry about cleaning your data.
Note: To find the most updated documentation, visit the Github repo.
Description: The quickplotter
module provided here is meant to provide common exploratory data plots without having to worry about cleaning your DataFrame or preanalyzing your data. Additionally, these plots can be exported to .{png, jpeg}
for use in reports and papers.
1. Basic Usage:
plotter = quickplotter.QuickPlotter(df: pd.DataFrame) #creates a QuickPlotter object with the given DataFrame
plotter.common(subset=['correlation', 'percent_nan']) #plots correlation between features, and percent nan in each column
plotter.distribution(column_subset=df.columns[0:4]) #plots distributions for the first four columns in the DataFrame
plotter.common(column_subset=['body_mass_index', 'blood_type']) #plots common plots for the given columns
2. Fundamentals
If the number of NaN
values in the DataFrame is <= 5%
of the total values, the NaN rows will be dropped and the plots will be generated without them. Remember, this is meant to be a quick and dirty tool for exploration, and not for being delicate with each data entry.
subset & diff lists
The quickplot module works mainly with two specifications, subset
and diff
.
For any subset
-like list, the items in the list will be used. For any diff
-like list, all items except those in the list will be used.
The options are as follow:
subset
: Use only the plots specified in the listdiff
: Use all plots except those specified in the listsubset_columns
: Use all columns specified in the list. Can either bedf.columns
slicing or by namediff_columns
: Use all columns except those specified in the list. Can either bedf.columns
slicing or by name.
3. Contributing
If you have read this far I hope you've found this tool useful. I am always looking to learn more and develop as a collaborative programmer, so if you have any ideas or contributions, feel free to write a feature or pull request.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file quickplotter-1.0.tar.gz
.
File metadata
- Download URL: quickplotter-1.0.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd113201a5b72819af360c4710c138138e0f6d962b22d1232ba76daf965dd145 |
|
MD5 | 6925e05ba96014f6ab24be99c46c7503 |
|
BLAKE2b-256 | c92982efbeec262696ef3d8d292548fa38ddaba9b83b0d6472490c1da3dcb3b4 |
File details
Details for the file quickplotter-1.0-py3-none-any.whl
.
File metadata
- Download URL: quickplotter-1.0-py3-none-any.whl
- Upload date:
- Size: 7.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06e932edf0c9cd8f191eda69a13c3094e41d50db04b35772751a76e35e674844 |
|
MD5 | 02526a0b2371d9e32207b097675674dc |
|
BLAKE2b-256 | 9b87e74cf6ea509016b25a6720fc4a7396ad45917add72544f813f9594368c3a |