Skip to main content

No project description provided

Project description

Quick-Show

  • Quick-Show is a package that allows you to easily and quickly draw 2D or 3D t-SNE and PCA plots using specific columns of a refined dataframe.
  • Quick Show is an abstraction using popular libraries such as sklearn and matplotlib, so it is very light and convenient.
  • Note: quich show is sub-modules of other packages to manage quickshow more lightly and use more widly.
  • 추가 업데이트 계획이 있으므로, 간단한 함수로 관리하며, 추가 배포 예정 레포의 서브 모듈로 사용함.

Quick Start

$ pip install quickshow
  • Create a scatter plot very quickly and easily by inputting a clean dataframe and column names that do not have missing data.

  • If the label column does not exist, simply enter None as an argument.

    from quickshow import vis_tsne2d, vis_tsne3d, vis_pca
    
    # Make sample df
    df = pd.DataFrame([3,2,3,2,3,3,1,1])
    df['val'] = [np.array([np.random.randint(0,10000),np.random.randint(0,10000),np.random.randint(0,10000)]) for x in df[0]]
    df.columns = ['labels', 'values']
    
    # Use matplotlib rcparams or returned dataframe for customize your plot.
    return_df = vis_tsne2d(df, 'values', 'labels', False, 'fig1.png')
    return_df = vis_tsne3d(df, 'values', 'labels', False, 'fig2.png')
    return_df = vis_pca(df, 'values', 'labels', 2, False, 'fig3.png')
    return_df = vis_pca(df, 'values', 'labels', 3, False, 'fig4.png')
    



    • For more details, please check doc string.


Functions

It contains 3 functions: vis_tsne2d, vis_tsne3d, vis_pca

  • (1) vis_tsne2d function: Simple visuallization of 2-dimensional t-distributed stochastic neighbor embedding
  • (2) vis_tsne3d function: Simple visuallization of 3-dimensional t-distributed stochastic neighbor embedding
  • (3) vis_pca function: Simple visuallization of Principal Component Analysis (PCA)

All function returns the dataframe which used to plot. Thus, use the returned dataframe object to customize your plot. Or use matplotlib's rcparam methods.

References

[1] sklearn.manifold.TSNE https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
[2] sklearn.decomposition.PCA https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
[3] matplotlib https://matplotlib.org/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickshow-0.1.1.tar.gz (964.5 kB view details)

Uploaded Source

Built Distribution

quickshow-0.1.1-py3-none-any.whl (963.4 kB view details)

Uploaded Python 3

File details

Details for the file quickshow-0.1.1.tar.gz.

File metadata

  • Download URL: quickshow-0.1.1.tar.gz
  • Upload date:
  • Size: 964.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/0.10.1 urllib3/1.26.4 tqdm/4.64.1 importlib-metadata/4.6.4 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7

File hashes

Hashes for quickshow-0.1.1.tar.gz
Algorithm Hash digest
SHA256 13561f90ae671cc7b292c76bee3642b734ceffad8427f76fd681022f890941dd
MD5 d273cf7e92aaf537be7692fc791f1855
BLAKE2b-256 f2140dcc07c9e4f3752c183520ccaf2c834844d59206f42e6abee0a0c988b3a4

See more details on using hashes here.

File details

Details for the file quickshow-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: quickshow-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 963.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/0.10.1 urllib3/1.26.4 tqdm/4.64.1 importlib-metadata/4.6.4 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7

File hashes

Hashes for quickshow-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 872d2bd2284d1d48f830d5d7023a15a7c0cf26808d8b64565219723a813511dd
MD5 5324fea7ccebfaf87c6f2b2e103d7e93
BLAKE2b-256 c90cecd2ada4a9833ba83e8a64806fd237d44c08024cfaab9dd6b135a57bd7e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page