Skip to main content

No project description provided

Project description

Quick-Show

  • Quick-Show is a package that allows you to easily and quickly draw 2D or 3D t-SNE and PCA plots using specific columns of a refined dataframe.
  • Quick Show is an abstraction using popular libraries such as sklearn and matplotlib, so it is very light and convenient.
  • Note: quich show is sub-modules of other packages to manage quickshow more lightly and use more widly.
  • 추가 업데이트 계획이 있으므로, 간단한 함수로 관리하며, 추가 배포 예정 레포의 서브 모듈로 사용함.

Quick Start

$ pip install quickshow
  • Create a scatter plot very quickly and easily by inputting a clean dataframe and column names that do not have missing data.

  • If the label column does not exist, simply enter None as an argument.

    from quickshow import vis_tsne2d, vis_tsne3d, vis_pca
    
    # Make sample df
    df = pd.DataFrame([3,2,3,2,3,3,1,1])
    df['val'] = [np.array([np.random.randint(0,10000),np.random.randint(0,10000),np.random.randint(0,10000)]) for x in df[0]]
    df.columns = ['labels', 'values']
    
    # Use matplotlib rcparams or returned dataframe for customize your plot.
    return_df = vis_tsne2d(df, 'values', 'labels', False, 'fig1.png')
    return_df = vis_tsne3d(df, 'values', 'labels', False, 'fig2.png')
    return_df = vis_pca(df, 'values', 'labels', 2, False, 'fig3.png')
    return_df = vis_pca(df, 'values', 'labels', 3, False, 'fig4.png')
    



    • For more details, please check doc string.


Functions

It contains 3 functions: vis_tsne2d, vis_tsne3d, vis_pca

  • (1) vis_tsne2d function: Simple visuallization of 2-dimensional t-distributed stochastic neighbor embedding
  • (2) vis_tsne3d function: Simple visuallization of 3-dimensional t-distributed stochastic neighbor embedding
  • (3) vis_pca function: Simple visuallization of Principal Component Analysis (PCA)

All function returns the dataframe which used to plot. Thus, use the returned dataframe object to customize your plot. Or use matplotlib's rcparam methods.

References

[1] sklearn.manifold.TSNE https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
[2] sklearn.decomposition.PCA https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
[3] matplotlib https://matplotlib.org/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickshow-0.1.2.tar.gz (964.6 kB view details)

Uploaded Source

Built Distribution

quickshow-0.1.2-py3-none-any.whl (963.5 kB view details)

Uploaded Python 3

File details

Details for the file quickshow-0.1.2.tar.gz.

File metadata

  • Download URL: quickshow-0.1.2.tar.gz
  • Upload date:
  • Size: 964.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/0.10.1 urllib3/1.26.4 tqdm/4.64.1 importlib-metadata/4.6.4 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7

File hashes

Hashes for quickshow-0.1.2.tar.gz
Algorithm Hash digest
SHA256 68967d6483f8d6ee63de266af10d6bbc568940421b0d6b31bc4fc1904c5d3b25
MD5 31cc4e3beae515780a105ba1c43ad96c
BLAKE2b-256 28a41fb3f7bf54c969281b70c1ed70e1f234b052322f5dd462aa13569d537809

See more details on using hashes here.

File details

Details for the file quickshow-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: quickshow-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 963.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/0.10.1 urllib3/1.26.4 tqdm/4.64.1 importlib-metadata/4.6.4 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7

File hashes

Hashes for quickshow-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2fc4ad6194205602d9e668c51cda4a350793eeb35ab586b0aa6de5c5d04516f8
MD5 ed4e1f909a6c82989657df0914edb19d
BLAKE2b-256 d22735c4994a7749b496673f17540c2d26178ab9fad621db45b0704e5e1c7a1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page