No project description provided
Project description
Quick-Show
- Quick-Show is a package that allows you to easily and quickly draw 2D or 3D t-SNE and PCA plots using specific columns of a refined dataframe.
- Quick Show is an abstraction using popular libraries such as sklearn and matplotlib, so it is very light and convenient.
Note
: quich show is sub-modules of other packages to manage quickshow more lightly and use more widly.- 추가 업데이트 계획이 있으므로, 간단한 함수로 관리하며, 추가 배포 예정 레포의 서브 모듈로 사용함.
Quick Start
$ pip install quickshow
-
Create a scatter plot very quickly and easily by inputting a clean dataframe and column names that do not have missing data.
-
If the label column does not exist, simply enter
None
as an argument.from quickshow import vis_tsne2d, vis_tsne3d, vis_pca # Make sample df df = pd.DataFrame([3,2,3,2,3,3,1,1]) df['val'] = [np.array([np.random.randint(0,10000),np.random.randint(0,10000),np.random.randint(0,10000)]) for x in df[0]] df.columns = ['labels', 'values'] # Use matplotlib rcparams or returned dataframe for customize your plot. return_df = vis_tsne2d(df, 'values', 'labels', False, 'fig1.png') return_df = vis_tsne3d(df, 'values', 'labels', False, 'fig2.png') return_df = vis_pca(df, 'values', 'labels', 2, False, 'fig3.png') return_df = vis_pca(df, 'values', 'labels', 3, False, 'fig4.png')
- For more details, please check doc string.
Functions
It contains 3 functions: vis_tsne2d
, vis_tsne3d
, vis_pca
- (1)
vis_tsne2d
function: Simple visuallization of 2-dimensional t-distributed stochastic neighbor embedding - (2)
vis_tsne3d
function: Simple visuallization of 3-dimensional t-distributed stochastic neighbor embedding - (3)
vis_pca
function: Simple visuallization of Principal Component Analysis (PCA)
All function returns the dataframe which used to plot. Thus, use the returned dataframe object to customize your plot. Or use matplotlib's rcparam methods.
References
[1] sklearn.manifold.TSNE https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
[2] sklearn.decomposition.PCA https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
[3] matplotlib https://matplotlib.org/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file quickshow-0.1.2.tar.gz
.
File metadata
- Download URL: quickshow-0.1.2.tar.gz
- Upload date:
- Size: 964.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/0.10.1 urllib3/1.26.4 tqdm/4.64.1 importlib-metadata/4.6.4 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68967d6483f8d6ee63de266af10d6bbc568940421b0d6b31bc4fc1904c5d3b25 |
|
MD5 | 31cc4e3beae515780a105ba1c43ad96c |
|
BLAKE2b-256 | 28a41fb3f7bf54c969281b70c1ed70e1f234b052322f5dd462aa13569d537809 |
File details
Details for the file quickshow-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: quickshow-0.1.2-py3-none-any.whl
- Upload date:
- Size: 963.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/0.10.1 urllib3/1.26.4 tqdm/4.64.1 importlib-metadata/4.6.4 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2fc4ad6194205602d9e668c51cda4a350793eeb35ab586b0aa6de5c5d04516f8 |
|
MD5 | ed4e1f909a6c82989657df0914edb19d |
|
BLAKE2b-256 | d22735c4994a7749b496673f17540c2d26178ab9fad621db45b0704e5e1c7a1a |