Skip to main content

A tool for quick statistical analysis for HEP experiments

Project description

Setup

Clone the repository:

git clone ssh://git@gitlab.cern.ch:7999/clcheng/quickstats.git

1. CERN User

To set up from lxplus, just do

source setup.sh

2. Genearl User

To set up locally, make sure you have pyROOT 6.22+ installed (using conda is recommended), and do

pip install quickstats

Important: First-time compilation

To compile c++ dependencies, do this for first time use

quickstats compile

Installing pyROOT

Simplest way to install pyROOT is via conda

conda install -c conda-forge ROOT

Command Line Tools

Run Pulls

quickstats run_pulls -i <input_ws_path> -d <dataset_name> -p <np_name/pattern> --poi <poi_name> --parallel -1 -o <output_dir>

The following options are available

Option Description Default
-i/--input_file Path to the input workspace file -
-w/--workspace Name of workspace. Auto-detect by default. None
-m/--model_config Name of model config. Auto-detect by default. None
-d/--data Name of dataset "combData"
-p/--parameter Nuisance parameter(s) to run pulls on. Multiple parameters are separated by commas. Wildcards are accepted. All NPs will be run over by default ""
-x/--poi POIs to measure. If empty, impact on POI will not be calculated. ""
-r/--profile Parameters to profile ""
-f/--fix Parameters to fix ""
-s/--snapshot Name of initial snapshot "nominalNuis"
-o/--outdir Output directory "pulls"
-t/--minimizer_type Minimizer type "Minuit2"
-a/--minimizer_algo Minimizer algorithm "Migrad"
-c/--num_cpu Number of CPUs to use per parameter 1
--binned/--unbinned Whether to use binned likelihood True
-q/--precision Precision for scan 0.001
-e/--eps Tolerance 1.0
-l/--log_level Log level "INFO"
--eigen/--no-eigen Compute eigenvalues and vectors False
--strategy Default fit strategy 0
--fix-cache/--no-fix-cache Fix StarMomentMorph cache True
--fix-multi/--no-fix-multi Fix MultiPdf level 2 True
--offset/--no-offset Offset likelihood True
--optimize/--no-optimize Optimize constant terms True
--max_calls Maximum number of function calls -1
--max_iters Maximum number of Minuit iterations -1
--parallel Parallelize job across different nuisanceparameters using N workers. Use -1 for N_CPU workers. 0
--cache/--no-cache Cache existing result True
--exclude Exclude NPs (wildcard is accepted) ""

Plot Pulls

quickstats plot_pulls --help

Run Likelihood Scan

quickstats likelihood_scan --help

Inspect Workspace

quickstats inspect_ws --help

Asymptotic CLs Limit

quickstats cls_limit --help

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quickstats-0.4.4.tar.gz (50.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quickstats-0.4.4-py3-none-any.whl (59.8 kB view details)

Uploaded Python 3

File details

Details for the file quickstats-0.4.4.tar.gz.

File metadata

  • Download URL: quickstats-0.4.4.tar.gz
  • Upload date:
  • Size: 50.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.4.tar.gz
Algorithm Hash digest
SHA256 064cc2609922b1c5e4672aef07b5d201c5074afc23d4672898637f92968e281b
MD5 333f16875d3ebefe2b528827cdc2fbfa
BLAKE2b-256 1e8088a368d41b931c931d33ce198f7a7e2cf30112c6b78ae4d174ac1e234ae4

See more details on using hashes here.

File details

Details for the file quickstats-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: quickstats-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 59.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.10

File hashes

Hashes for quickstats-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 16229904de34adccb810f5bd8327003207a216b561bd9c844fb60ca80d56fee9
MD5 6cd9d164180868d1024990d59d1b463a
BLAKE2b-256 ac7f0d9515db94262fc3dd6bc0b36b96e0c86ca74b60f22b47f25fda9c7b04f9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page