Skip to main content

Quantum circuit simulator for research

Project description

Qulacs

Ubuntu CI macOS CI Windows CI Wheel build Downloads

Qulacs is a Python/C++ library for fast simulation of large, noisy, or parametric quantum circuits. Qulacs is developed at QunaSys, Osaka University, NTT, and Fujitsu.

Qulacs is licensed under the MIT license.

Quick Install for Python

pip install qulacs

If your CPU is older than Intel Haswell architecture, the binary installed with the above command does not work. In this case, please install Qulacs with the following command. Even if your CPU is newer than Haswell, Qulacs installed with the below command shows better performance but takes a longer time. See "Install Python library from source" section for detail.

pip install git+https://github.com/qulacs/qulacs.git

If you have NVIDIA GPU and CUDA is installed, GPU-version can be installed with the following command:

pip install qulacs-gpu

Features

Note Qulacs-Osaka/qulacs-osaka was integrated into the qulacs/qulacs. For more details, please refer to Information section.

  • Fast quantum circuit simulation with parallelized C/C++ backend
  • Noisy quantum gate for simulation of NISQ devices
  • Parametric quantum gates for variational methods
  • Circuit compression for fast simulation
  • GPU support for fast simulation
  • Many utility functions for research

Performance

The time for simulating random quantum circuits is compared with several quantum circuit simulators in November 2020.

See the benchmark repository and Section VI and VII of our paper for the detail of this benchmark.

Note that the plots with names ending with "opt" and "heavy opt" perform circuit optimization for fast simulation, where the time for optimization is included in the execution time.

Single-thread benchmark

single thread benchmark

Multi-thread benchmark

multi thread benchmark

GPU benchmark

GPU benchmark

Install Python library from source

To install Qulacs optimized for your system, we recommend the following install procedure for faster simulation of quantum circuits, while this requires a compiler and takes time for installation. In addition, you can enable or disable optimization features such as SIMD optimization, OpenMP parallelization, and GPU support.

A binary that is installed via pip command is optimized for Haswell architecture. Thus, Qulacs installed via pip command does not work with a CPU older than Haswell. If your CPU is newer than Haswell, Qualcs built from source shows the better performance.

Requirements

  • C++ compiler (gcc or VisualStudio)
    • gcc/g++ >= 7.0.0 (checked in Linux, MacOS, cygwin, MinGW, and WSL)
    • Microsoft VisualStudio C++ 2015 or later
  • Boost >= 1.71.0 (Minimum version tested in CI)
  • Python >= 3.7
  • CMake >= 3.0
  • git
  • (option) CUDA >= 8.0
  • (option) AVX2 support

If your system supports AVX2 instructions, SIMD optimization is automatically enabled. If you want to enable GPU simulator, install qulacs through qulacs-gpu package or build from source. Note that qulacs-gpu includes CPU simulator. You don't need to install both.

Qulacs is tested on the following systems.

  • Ubuntu 20.04
  • macOS Big Sur 11
  • Windows Server 2019

If you encounter some troubles, see troubleshooting.

How to install

Install with default options (Multi-thread without GPU):

pip install .

If AVX2 instructions are not supported, SIMD optimization is automatically disabled.

Install with GPU support (CUDA is required):

USE_GPU=Yes pip install .

Install single-thread Qulacs:

USE_OMP=No pip install .

The number of threads used in Qulacs installed with default options can be controlled via the environment variable OMP_NUM_THREADS or QULACS_NUM_THREADS. While OMP_NUM_THREADS affects the parallelization of other libraries, QULACS_NUM_THREADS controls only the parallelization of QULACS. Or, if you want to force only Qulacs to use a single thread, You can install single-thread Qulacs with the above command.

For development purpose, optional dependencies can be installed as follows.

# Install development tools
pip install .[dev]
# Install dependencies for document generation
pip install .[doc]

Uninstall Qulacs:

pip uninstall qulacs

Use Qulacs as C++ library

Build with GCC

Static libraries of Qulacs can be built with the following commands:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
./script/build_gcc.sh

To build shared libraries, execute make shared at ./qulacs/build folder. When you want to build with GPU, use build_gcc_with_gpu.sh instead of build_gcc.sh.

Then, you can build your codes with the following gcc command:

g++ -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cpp -lvqcsim_static -lcppsim_static -lcsim_static -fopenmp

If you want to run your codes with GPU, include cppsim/state_gpu.hpp and use QuantumStateGpu instead of QuantumState and build with the following command:

nvcc -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cu -lvqcsim_static -lcppsim_static -lcsim_static -lgpusim_static -D _USE_GPU -lcublas -Xcompiler -fopenmp

Build with MSVC

Static libraries of Qulacs can be built with the following command:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
script/build_msvc_2017.bat

When you want to build with GPU, use build_msvc_2017_with_gpu.bat. If you use MSVC with other versions, use build_msvc_2015.bat or edit the generator name in build_msvc_2017.bat.

Your C++ codes can be built with Qulacs with the following process:

  1. Create an empty project.
  2. Select "x64" as an active solution platform.
  3. Right Click your project name in Solution Explorer, and select "Properties".
  4. At "VC++ Directories" section, add the full path to ./qulacs/include to "Include Directories"
  5. At "VC++ Directories" section, add the full path to ./qulacs/lib to "Library Directories"
  6. At "C/C++ -> Code Generation" section, change "Runtime library" to "Multi-threaded (/MT)".
  7. At "Linker -> Input" section, add vqcsim_static.lib;cppsim_static.lib;csim_static.lib; to "Additional Dependencies".

Tutorial and API documents

See the following documents for tutorials.

Python sample code

from qulacs import Observable, QuantumCircuit, QuantumState
from qulacs.gate import Y,CNOT,merge

state = QuantumState(3)
state.set_Haar_random_state()

circuit = QuantumCircuit(3)
circuit.add_X_gate(0)
merged_gate = merge(CNOT(0,1),Y(1))
circuit.add_gate(merged_gate)
circuit.add_RX_gate(1,0.5)
circuit.update_quantum_state(state)

observable = Observable(3)
observable.add_operator(2.0, "X 2 Y 1 Z 0")
observable.add_operator(-3.0, "Z 2")
value = observable.get_expectation_value(state)
print(value)

If you want to run it on GPU, install GPU-enabled qulacs and replace QuantumState in the above codes with QuantumStateGpu.

C++ sample code

#include <iostream>
#include <cppsim/state.hpp>
#include <cppsim/circuit.hpp>
#include <cppsim/observable.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>

int main(){
    QuantumState state(3);
    state.set_Haar_random_state();

    QuantumCircuit circuit(3);
    circuit.add_X_gate(0);
    auto merged_gate = gate::merge(gate::CNOT(0,1),gate::Y(1));
    circuit.add_gate(merged_gate);
    circuit.add_RX_gate(1,0.5);
    circuit.update_quantum_state(&state);

    Observable observable(3);
    observable.add_operator(2.0, "X 2 Y 1 Z 0");
    observable.add_operator(-3.0, "Z 2");
    auto value = observable.get_expectation_value(&state);
    std::cout << value << std::endl;
    return 0;
}

If you place the above codes in the root directory of this repository(e.g., qulacs/main.cpp), you can build your codes with the following command:

g++ -O2 -I ./include -L ./lib main.cpp -fopenmp -lcppsim_static -lcsim_static

If you want to run it on GPU, include cppsim/state_gpu.hpp and replace QuantumState with QuantumStateGpu.

How to cite

Please cite this arXiv paper: Qulacs: a fast and versatile quantum circuit simulator for research purpose

Information

Experimental new features of Qulacs that have been developed in the Osaka University repository Qulacs-Osaka/qulacs-osaka will be integrated into the original Qulacs. The following new features will be added!!!

Integration date

Scheduled around August 2022.

New features

The main new features are as follows

  • Providing type hint files for Python
    • Configure tools such as mypy to take full advantage of type hint information.
    • mypy can detect the use of incorrect argument types in the qulacs API.
  • Sending exceptions with detailed information
    • Makes it easier to understand the cause of the error.
    • (For Jupyter Notebook users) kernel is less likely to crash if incorrect input is given.
  • Added backprop (gradient calculation by error back propagation method) to ParametricQuantumCircuit
    • It is faster than calculating gradients one by one.
  • Gradient Calculator

Scope of impact

The existing functionality has not been changed, so the existing code using Qulacs will continue to work as is. However, since the implementation language of csim has been changed from C to C++, changes may be necessary if you have been using direct calls to csim. Due to the C++ change, all complex numbers are now handled by std::complex.

Add dependency libraries

This integration adds boost as a dependency library. There will be some changes in the installation procedure.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qulacs-0.6.10.tar.gz (803.6 kB view details)

Uploaded Source

Built Distributions

qulacs-0.6.10-cp312-cp312-win_amd64.whl (638.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

qulacs-0.6.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (961.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

qulacs-0.6.10-cp312-cp312-macosx_11_0_arm64.whl (671.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

qulacs-0.6.10-cp312-cp312-macosx_10_9_x86_64.whl (767.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

qulacs-0.6.10-cp311-cp311-win_amd64.whl (637.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

qulacs-0.6.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (961.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

qulacs-0.6.10-cp311-cp311-macosx_11_0_arm64.whl (669.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

qulacs-0.6.10-cp311-cp311-macosx_10_9_x86_64.whl (759.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

qulacs-0.6.10-cp310-cp310-win_amd64.whl (636.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

qulacs-0.6.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (960.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

qulacs-0.6.10-cp310-cp310-macosx_11_0_arm64.whl (668.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

qulacs-0.6.10-cp310-cp310-macosx_10_9_x86_64.whl (758.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

qulacs-0.6.10-cp39-cp39-win_amd64.whl (618.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

qulacs-0.6.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (960.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

qulacs-0.6.10-cp39-cp39-macosx_11_0_arm64.whl (668.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

qulacs-0.6.10-cp39-cp39-macosx_10_9_x86_64.whl (758.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

qulacs-0.6.10-cp38-cp38-win_amd64.whl (635.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

qulacs-0.6.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (961.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

qulacs-0.6.10-cp38-cp38-macosx_11_0_arm64.whl (668.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

qulacs-0.6.10-cp38-cp38-macosx_10_9_x86_64.whl (758.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file qulacs-0.6.10.tar.gz.

File metadata

  • Download URL: qulacs-0.6.10.tar.gz
  • Upload date:
  • Size: 803.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for qulacs-0.6.10.tar.gz
Algorithm Hash digest
SHA256 e7a872f0497b22ac3e64a9074a6b5572d5cb426864ac27f5cbfd11527959cd96
MD5 4e35a9e4fbf44bedf29501900c5ba628
BLAKE2b-256 d364c0807c3eff27150f5bcf2c12a946a9cab8de6b78b90dfbc962b404d1fcd8

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.10-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 638.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for qulacs-0.6.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 354458f1576fa88806cc31b692ea56a935fd62fb01cfd351c01aa80c0e6a61f6
MD5 c61f126dfe85de841cb5eec3f11dd434
BLAKE2b-256 f33e94027e3a8fbc84ffeb7454c9b1178bb4fd39e773e950d3aa6611766c3eb9

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca8bd30828571d5a83f408f995030efee2350020cc8351d5695139dd0ddeac18
MD5 6ed6e1f75ceec99e9e40719d1e3c756b
BLAKE2b-256 b16a64cdea922c41c8555fb65ce5916df2869c7a121e796b9c077131daf0105b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e378ebb421dcc926f7e040dad326756b2ca6b921598fd6bfe66ceeb5e5a4b8e2
MD5 dd73e1565730819a64940abeabfc350f
BLAKE2b-256 7ba2803279d5f04ef262334087726f7b4ee12f43e0666278b6a7b2479d84bf7b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04d68f4b3616741f4cf3f03fd63a964118d560204b15e6ef331e71b64a8a7d72
MD5 89fcf5cc6fef8609d91113a59851762f
BLAKE2b-256 f9a13703f6ca843b683e9bb8398177bcaf3df8944b97798ad8cc09f37535eeac

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 637.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for qulacs-0.6.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 acefb66da0bf563169b135865efb9d85f9f4428b02503d08fa6cc6289d6d9aec
MD5 9caed0cdf615e13f4931adc7008fdbf9
BLAKE2b-256 7dcdd5022d0de2107c3f7031c188462d9df8431bf22b4d120d6a000d13e04cc2

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76ca215e00fe956aa0f12c2a0fcbecd9283fe571b2cc36e3c68bdd1f48ca406a
MD5 4926023226e0e3444733c093d1d36b70
BLAKE2b-256 e77f833a0f147ed1a5e0eca7008b76cf29ec9b3a37c8b6792b69b712c714834f

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 43d4cab074fb0a85d21b621d9c951c31a9a21ac361ce34056b39a758245b8a95
MD5 bf9f367397bded251c2c2b7bd9443b3a
BLAKE2b-256 c1c9c5a1d18df430218c42483372517c51ac7cbe25836bf27eaf6884b62f9d42

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08a8d044c3d9ebb8c393ed11bd5e92ee30e8ca485016b9e0c1e7a8fd4fac9d21
MD5 065266788b5569feaebb637b7bc3e665
BLAKE2b-256 30a4a2f96043fc24d7077e62d81214dac6dfebf96e3f1ef594c8cf060a7e0175

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 636.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c72571328ca3fbc94b4277feaf8629781580e9b22da471b4355f01dd135a52a8
MD5 a8e8b583e6e8c9c43de0c73b966eca66
BLAKE2b-256 e9eb5f11b1d265e6943859675adab22d200178de5322d1268fd9e9da1f714e3e

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c80a45202ceff76fcc3a0f2f21125d1187fa6baddc51c969cfb0949b2a3ba9e
MD5 ceb6a1138332f28b18d1677242ecbefc
BLAKE2b-256 48a26b61d0630c0126b25e706249269fcdb69fa1f61bcc97e82d5644a3d327e1

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 89c8857e283c0e1627a12a155a1b5ed593cf32f8037a291e2297e044d75a82d3
MD5 4b337eec02ceba0bfef44ea84c9421fc
BLAKE2b-256 67cc5d7dad4d5c007350b0609524ca403f7932c8bb2de104241fa0a0f2af690d

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3c9e60929947f68117fa4e19b097490377a9fe2482d527444d0201a89d9a87b
MD5 116ca67bc12dea09581405012a8db193
BLAKE2b-256 47f2f5fa6a0b3f19231dcff6a1be8471d52ff356568f862448b6d38463b6b70f

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 618.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for qulacs-0.6.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8a7afbdaf53b54e925f96d5bb7bf3acd885fa9037ac8d4ee83a0053c90b29b1
MD5 6823dbe7eeb9ef5b9fe963df31c40c8c
BLAKE2b-256 0da9e0b538819d5c1a6d416336a6df5771b4897129c750985f26053bc96ed2ec

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 287b5f756faa3842d6b4cc20c0ab000b6a9f63891f3aaaf7a069537e02dccfe4
MD5 f147fb0cc5d722cb1d12a8acfef025e5
BLAKE2b-256 4e08d533b6a243980ad9582d9ead43ec0e2ca954ca00521e6e64cd2fcf7aa78b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8410fdcc8477fd970cba6ab9b83e1d3a03cdf3d28ac0d3ec146c939d67c13c40
MD5 53ac3319bb418bf9ec7787666b488f57
BLAKE2b-256 5112e4a0e87d9db499289e618f55bf5c8e24827c6d2690c76c4be25a4ca71745

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ce590b72bffb992d158022fde34f264c7d44c78a40546be9e58465765a3f962
MD5 f706539cb5ce199ead4f71023c5f0f02
BLAKE2b-256 51fe2393c435e9d9ced53db07ef4c3eb4df40d91acb13671bed4172d117caf8d

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 635.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for qulacs-0.6.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1a0e1293e8619921791be2150a5db633585ad20f1ef2ad718f0fd41af8900ed9
MD5 bea2971fcb76ac3c3a63444d40d17c81
BLAKE2b-256 2df5badccb7e2d75a547a7aee6d782fd3b836b168c67e0ec1ae45480db0973a2

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f66ef094aba52281348f929b5ce9f55b39a50e8c9d7a7f9e98564a4ae372cac
MD5 ffd7e5a1029399ab30832329fd157250
BLAKE2b-256 df1c441a58ecd075694376fdac69caca513a45b15cc48d28b408f7afd511a17e

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c9c0d7204a400e6eb7dc10fdfbf26949622e67cc7ae22e80d9f4a74577ef31c
MD5 f5452366c4fc9988f09bb5d9098e1bd3
BLAKE2b-256 b70acab4a9428a763d34073199f9c36344e52c67ba7a33380c1628c38999fc90

See more details on using hashes here.

File details

Details for the file qulacs-0.6.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ffd975f04f0583e75d792a3adc9268f23251e86f192e6d411350684699ad794
MD5 d2207f7cfaad6f312be265ee6417fb45
BLAKE2b-256 694a0a0701201934ddb67cf78febccc3f534de98d8daf418d9fa0fbb12652bc1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page