Skip to main content

Quantum circuit simulator for research

Project description

Qulacs

Ubuntu CI macOS CI Windows CI Wheel build Downloads

Qulacs is a Python/C++ library for fast simulation of large, noisy, or parametric quantum circuits. Qulacs is developed at QunaSys, Osaka University, NTT, and Fujitsu.

Qulacs is licensed under the MIT license.

Quick Install for Python

pip install qulacs

If your CPU is older than Intel Haswell architecture, the binary installed with the above command does not work. In this case, please install Qulacs with the following command. Even if your CPU is newer than Haswell, Qulacs installed with the below command shows better performance but takes a longer time. See "Install Python library from source" section for detail.

pip install git+https://github.com/qulacs/qulacs.git

If you have NVIDIA GPU and CUDA is installed, GPU-version can be installed with the following command:

pip install qulacs-gpu

Features

Note Qulacs-Osaka/qulacs-osaka was integrated into the qulacs/qulacs. For more details, please refer to Information section.

  • Fast quantum circuit simulation with parallelized C/C++ backend
  • Noisy quantum gate for simulation of NISQ devices
  • Parametric quantum gates for variational methods
  • Circuit compression for fast simulation
  • GPU support for fast simulation
  • Many utility functions for research

Performance

The time for simulating random quantum circuits is compared with several quantum circuit simulators in November 2020.

See the benchmark repository and Section VI and VII of our paper for the detail of this benchmark.

Note that the plots with names ending with "opt" and "heavy opt" perform circuit optimization for fast simulation, where the time for optimization is included in the execution time.

Single-thread benchmark

single thread benchmark

Multi-thread benchmark

multi thread benchmark

GPU benchmark

GPU benchmark

Install Python library from source

To install Qulacs optimized for your system, we recommend the following install procedure for faster simulation of quantum circuits, while this requires a compiler and takes time for installation. In addition, you can enable or disable optimization features such as SIMD optimization, OpenMP parallelization, and GPU support.

A binary that is installed via pip command is optimized for Haswell architecture. Thus, Qulacs installed via pip command does not work with a CPU older than Haswell. If your CPU is newer than Haswell, Qualcs built from source shows the better performance.

Requirements

  • C++ compiler (gcc or VisualStudio)
    • gcc/g++ >= 7.0.0 (checked in Linux, MacOS, cygwin, MinGW, and WSL)
    • Microsoft VisualStudio C++ 2015 or later
  • Boost >= 1.71.0 (Minimum version tested in CI)
  • Python >= 3.7
  • CMake >= 3.0
  • git
  • (option) CUDA >= 8.0
  • (option) AVX2 support

If your system supports AVX2 instructions, SIMD optimization is automatically enabled. If you want to enable GPU simulator, install qulacs through qulacs-gpu package or build from source. Note that qulacs-gpu includes CPU simulator. You don't need to install both.

Qulacs is tested on the following systems.

  • Ubuntu 20.04
  • macOS Big Sur 11
  • Windows Server 2019

If you encounter some troubles, see troubleshooting.

How to install

Install with default options (Multi-thread without GPU):

pip install .

If AVX2 instructions are not supported, SIMD optimization is automatically disabled.

Install with GPU support (CUDA is required):

USE_GPU=Yes pip install .

Install single-thread Qulacs:

USE_OMP=No pip install .

The number of threads used in Qulacs installed with default options can be controlled via the environment variable OMP_NUM_THREADS or QULACS_NUM_THREADS. While OMP_NUM_THREADS affects the parallelization of other libraries, QULACS_NUM_THREADS controls only the parallelization of QULACS. Or, if you want to force only Qulacs to use a single thread, You can install single-thread Qulacs with the above command.

For development purpose, optional dependencies can be installed as follows.

# Install development tools
pip install .[dev]
# Install dependencies for document generation
pip install .[doc]

Uninstall Qulacs:

pip uninstall qulacs

Use Qulacs as C++ library

Build with GCC

Static libraries of Qulacs can be built with the following commands:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
./script/build_gcc.sh

To build shared libraries, execute make shared at ./qulacs/build folder. When you want to build with GPU, use build_gcc_with_gpu.sh instead of build_gcc.sh.

Then, you can build your codes with the following gcc command:

g++ -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cpp -lvqcsim_static -lcppsim_static -lcsim_static -fopenmp

If you want to run your codes with GPU, include cppsim/state_gpu.hpp and use QuantumStateGpu instead of QuantumState and build with the following command:

nvcc -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cu -lvqcsim_static -lcppsim_static -lcsim_static -lgpusim_static -D _USE_GPU -lcublas -Xcompiler -fopenmp

Build with MSVC

Static libraries of Qulacs can be built with the following command:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
script/build_msvc_2017.bat

When you want to build with GPU, use build_msvc_2017_with_gpu.bat. If you use MSVC with other versions, use build_msvc_2015.bat or edit the generator name in build_msvc_2017.bat.

Your C++ codes can be built with Qulacs with the following process:

  1. Create an empty project.
  2. Select "x64" as an active solution platform.
  3. Right Click your project name in Solution Explorer, and select "Properties".
  4. At "VC++ Directories" section, add the full path to ./qulacs/include to "Include Directories"
  5. At "VC++ Directories" section, add the full path to ./qulacs/lib to "Library Directories"
  6. At "C/C++ -> Code Generation" section, change "Runtime library" to "Multi-threaded (/MT)".
  7. At "Linker -> Input" section, add vqcsim_static.lib;cppsim_static.lib;csim_static.lib; to "Additional Dependencies".

Tutorial and API documents

See the following documents for tutorials.

Python sample code

from qulacs import Observable, QuantumCircuit, QuantumState
from qulacs.gate import Y,CNOT,merge

state = QuantumState(3)
state.set_Haar_random_state()

circuit = QuantumCircuit(3)
circuit.add_X_gate(0)
merged_gate = merge(CNOT(0,1),Y(1))
circuit.add_gate(merged_gate)
circuit.add_RX_gate(1,0.5)
circuit.update_quantum_state(state)

observable = Observable(3)
observable.add_operator(2.0, "X 2 Y 1 Z 0")
observable.add_operator(-3.0, "Z 2")
value = observable.get_expectation_value(state)
print(value)

If you want to run it on GPU, install GPU-enabled qulacs and replace QuantumState in the above codes with QuantumStateGpu.

C++ sample code

#include <iostream>
#include <cppsim/state.hpp>
#include <cppsim/circuit.hpp>
#include <cppsim/observable.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>

int main(){
    QuantumState state(3);
    state.set_Haar_random_state();

    QuantumCircuit circuit(3);
    circuit.add_X_gate(0);
    auto merged_gate = gate::merge(gate::CNOT(0,1),gate::Y(1));
    circuit.add_gate(merged_gate);
    circuit.add_RX_gate(1,0.5);
    circuit.update_quantum_state(&state);

    Observable observable(3);
    observable.add_operator(2.0, "X 2 Y 1 Z 0");
    observable.add_operator(-3.0, "Z 2");
    auto value = observable.get_expectation_value(&state);
    std::cout << value << std::endl;
    return 0;
}

If you place the above codes in the root directory of this repository(e.g., qulacs/main.cpp), you can build your codes with the following command:

g++ -O2 -I ./include -L ./lib main.cpp -fopenmp -lcppsim_static -lcsim_static

If you want to run it on GPU, include cppsim/state_gpu.hpp and replace QuantumState with QuantumStateGpu.

How to cite

Please cite this arXiv paper: Qulacs: a fast and versatile quantum circuit simulator for research purpose

Information

Experimental new features of Qulacs that have been developed in the Osaka University repository Qulacs-Osaka/qulacs-osaka will be integrated into the original Qulacs. The following new features will be added!!!

Integration date

Scheduled around August 2022.

New features

The main new features are as follows

  • Providing type hint files for Python
    • Configure tools such as mypy to take full advantage of type hint information.
    • mypy can detect the use of incorrect argument types in the qulacs API.
  • Sending exceptions with detailed information
    • Makes it easier to understand the cause of the error.
    • (For Jupyter Notebook users) kernel is less likely to crash if incorrect input is given.
  • Added backprop (gradient calculation by error back propagation method) to ParametricQuantumCircuit
    • It is faster than calculating gradients one by one.
  • Gradient Calculator

Scope of impact

The existing functionality has not been changed, so the existing code using Qulacs will continue to work as is. However, since the implementation language of csim has been changed from C to C++, changes may be necessary if you have been using direct calls to csim. Due to the C++ change, all complex numbers are now handled by std::complex.

Add dependency libraries

This integration adds boost as a dependency library. There will be some changes in the installation procedure.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qulacs-0.6.1.tar.gz (782.8 kB view details)

Uploaded Source

Built Distributions

qulacs-0.6.1-cp311-cp311-win_amd64.whl (572.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

qulacs-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (867.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

qulacs-0.6.1-cp311-cp311-macosx_11_0_arm64.whl (563.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

qulacs-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl (639.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

qulacs-0.6.1-cp310-cp310-win_amd64.whl (572.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

qulacs-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (867.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

qulacs-0.6.1-cp310-cp310-macosx_11_0_arm64.whl (563.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

qulacs-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl (639.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

qulacs-0.6.1-cp39-cp39-win_amd64.whl (555.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

qulacs-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (867.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

qulacs-0.6.1-cp39-cp39-macosx_11_0_arm64.whl (564.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

qulacs-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (639.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

qulacs-0.6.1-cp38-cp38-win_amd64.whl (572.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

qulacs-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (867.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

qulacs-0.6.1-cp38-cp38-macosx_11_0_arm64.whl (563.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

qulacs-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (639.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

qulacs-0.6.1-cp37-cp37m-win_amd64.whl (568.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

qulacs-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (886.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

qulacs-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (630.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file qulacs-0.6.1.tar.gz.

File metadata

  • Download URL: qulacs-0.6.1.tar.gz
  • Upload date:
  • Size: 782.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for qulacs-0.6.1.tar.gz
Algorithm Hash digest
SHA256 f958f26de98a37c519ff092167d440931a3ee77f8f628e2ab7441fe15322c28a
MD5 2af9de0bb53b69aad44c102cabb6366b
BLAKE2b-256 00239488ff29d46134cc6ce849423bf9166c0bbe056ba68ddce728a64b394924

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 572.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dc18d30a7e809786df0007a7bd7a918f53cc60369ae19a671cb55b65ea5056e5
MD5 2f0c7b38c7fa9f92eeb458ef0b09705d
BLAKE2b-256 3e0be5dcf15ad5d2aa3b24bde03e5fa83b45acc86334514c5754f26257609f7b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ea1c78fda2830a52702cffb7f22b3900282329ac5dcfa7c947dd00b0b126ba5
MD5 837f7a2880fffbfdb60dbfbda0783e32
BLAKE2b-256 03cf9b7bd6dec95265d6e6546aeeac04ad8e4e58116a657440c8ba87f0548795

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4807a134e00a9d6f20c488036933ad7c570ba07bcb813c8afd2b06f60c8c98a1
MD5 c8bd9fd976cd8c412bc6c89940b41ecb
BLAKE2b-256 44099833530c559a3c8847cb7be24af2d75963d07ce56145874f21e52b6f5760

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fea830bebadd34f07fb35680c11e7cd712343ea8dbead0d5ef417c70605a4ea4
MD5 88377cebc013ceab6b4eedb30d14f07d
BLAKE2b-256 dded61d8f59e6079210c811a8ae3128022e62881ac028460b47b04bca0288438

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 572.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 df0f0d0fe6f53ea628960ab32239ba0dd92a5e4b88a2936a24442fd64e58e515
MD5 e20083e7af125de28f8a3e742db6de7d
BLAKE2b-256 91014e9ee44769e87124e0a269e9f4fe99d90893e7ec22f7fbaf364a0bb81cae

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6892d39d46e1b5bd89def6cb96e67316abcb04ba1e1a5d894a2d7a155c0eb27
MD5 9c3fd5eb7b79a30b66c1e3c1b851f11f
BLAKE2b-256 a2efc9039ac7cf2a39d64b15df00db1c1cfcc9d8da941aa7fa1ca0525dbc751e

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b922972a7b9a827c16dc9e2c14478f276ead2eacad7d545db03ab795854b94f
MD5 5106b7913da800dc0aeb3799c9d78e0a
BLAKE2b-256 2070caa7066fc1baee63e9124d922285fabc3190072412dae70f05faaabf8113

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1f1951e9cb55e11ded47b7a652bb03b06f986ba19e6c2ea76b40b159f297f62
MD5 1776256b6910a96dfc9f9f085415b7a5
BLAKE2b-256 995c7c50eaec96e2eeedd2387e6a6670aa9444ca4fc04db98fae8b963d8f44d1

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 555.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 331a8084ed08b0e356149e51a756afd6c628fceb070d64c500d2c657351de909
MD5 6b6092e2f0551abb0183ecddb7c25d81
BLAKE2b-256 0e2891bdaa05ad3497580bc8ae045cf08a3bb7abff6ca79781511e3860ecd5e7

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06aaf7a7a01e6179a0362e170c923ac5834b8d0c5433a677dbcfed9aa9fdff02
MD5 7d3fb4e37d6947f5dc1b8b2efdb299c6
BLAKE2b-256 5bea6950d6b4fa3b6f887dd02d81c856473ab9ee7c4919aa2c3e9229a6e5711a

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60ed40efbeed8141ca171fceefbfa581d93a961601e4053b731262900724e383
MD5 eb81e1886f23eff737b41dfd0de122aa
BLAKE2b-256 33164c41f1339e74286fc0fe421474c8d852b3ccfa23a327de8695c703d71695

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b553c82db86e9e972b7cfdb816276123cc15aa4877375e8be14c48ec381109aa
MD5 4a52f9393195a4b50b679f741938ea16
BLAKE2b-256 a7f75dbc2bbd4cff41668f169583e7edf6387e076efea7318278eb5aaa353f13

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 572.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7e251102e157f36ade2b16ff34d65d55515f88ca0bf5be0a93f50232fd08eb97
MD5 70ad6168b5545c3d125a58294cdb1768
BLAKE2b-256 5c53e2d492c9ce9e1557a98a21f5c886e0b87a12c43a1255075c4c881d32af05

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bd699a68034a2a29e153d30735b561f57f0796bb4d30b2576d1cce1671e8d0b
MD5 adc78f75b41c77be86acf10168dbed50
BLAKE2b-256 b85c05011e59f7783ca81b40146efd51c85ad2fd09ae314b80e0b3b6c7bf51be

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c50733917f1b01b11e6be177255fab1be7af5563984f9c06827d038b4af4585
MD5 7fc3b394abc17a4c62c13ea18c90dfaa
BLAKE2b-256 0c65a07098458d4ad7a65241494ee8a66b5a6905644bdaec5cd1bc526b9e3596

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17142f904cb62f688f76feee07742072bfb9817992dbe5fa73da667e04425c55
MD5 4f86c3a7d58de6773458cb33d55fbdcf
BLAKE2b-256 0cf1b072ae25a329977e1d693b475f8b12e07282b9df7f1db8ff40f826f38db1

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 568.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 536212f0742efa49a6fc91c4c3349b48e669d47f7881a90f88c491d19ef7e732
MD5 4a6269b0f574640bdda3a48530cb2283
BLAKE2b-256 5b575ca2a225376aca4634f45e37402b6877f781ac109acb0fdc962a23b8c01d

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69f9ce7c836e0b755a158a4cc392b49ea414c6eb37b109ec3149d7b1f13005dc
MD5 58c1d7def7004a54d11c46099d802dfe
BLAKE2b-256 5cc7c36ea9d8288477e9504e4d0347667575fc6d6eb29040d1ee05ed09e2d76b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f29acc7b86913612ba2b39241b365e0dea9925a4929998dfc2eb94e7d43b81e
MD5 67f0fa9713e9cbf0988c6df740fddfe3
BLAKE2b-256 57406aa9c9da3cec1e35119277dfe3f508d707d02c26b7e81899588f8bce9ef1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page