Skip to main content

Quantum circuit simulator for research

Project description

Qulacs

Ubuntu CI macOS CI Windows CI Wheel build Downloads

Qulacs is a Python/C++ library for fast simulation of large, noisy, or parametric quantum circuits. Qulacs is developed at QunaSys, Osaka University, NTT, and Fujitsu.

Qulacs is licensed under the MIT license.

Quick Install for Python

pip install qulacs

If your CPU is older than Intel Haswell architecture, the binary installed with the above command does not work. In this case, please install Qulacs with the following command. Even if your CPU is newer than Haswell, Qulacs installed with the below command shows better performance but takes a longer time. See "Install Python library from source" section for detail.

pip install git+https://github.com/qulacs/qulacs.git

If you have NVIDIA GPU and CUDA is installed, GPU-version can be installed with the following command:

pip install qulacs-gpu

Features

Note Qulacs-Osaka/qulacs-osaka was integrated into the qulacs/qulacs. For more details, please refer to Information section.

  • Fast quantum circuit simulation with parallelized C/C++ backend
  • Noisy quantum gate for simulation of NISQ devices
  • Parametric quantum gates for variational methods
  • Circuit compression for fast simulation
  • GPU support for fast simulation
  • Many utility functions for research

Performance

The time for simulating random quantum circuits is compared with several quantum circuit simulators in November 2020.

See the benchmark repository and Section VI and VII of our paper for the detail of this benchmark.

Note that the plots with names ending with "opt" and "heavy opt" perform circuit optimization for fast simulation, where the time for optimization is included in the execution time.

Single-thread benchmark

single thread benchmark

Multi-thread benchmark

multi thread benchmark

GPU benchmark

GPU benchmark

Install Python library from source

To install Qulacs optimized for your system, we recommend the following install procedure for faster simulation of quantum circuits, while this requires a compiler and takes time for installation. In addition, you can enable or disable optimization features such as SIMD optimization, OpenMP parallelization, and GPU support.

A binary that is installed via pip command is optimized for Haswell architecture. Thus, Qulacs installed via pip command does not work with a CPU older than Haswell. If your CPU is newer than Haswell, Qualcs built from source shows the better performance.

Requirements

  • C++ compiler (gcc or VisualStudio)
    • gcc/g++ >= 7.0.0 (checked in Linux, MacOS, cygwin, MinGW, and WSL)
    • Microsoft VisualStudio C++ 2015 or later
  • Boost >= 1.71.0 (Minimum version tested in CI)
  • Python >= 3.7
  • CMake >= 3.0
  • git
  • (option) CUDA >= 8.0
  • (option) AVX2 support

If your system supports AVX2 instructions, SIMD optimization is automatically enabled. If you want to enable GPU simulator, install qulacs through qulacs-gpu package or build from source. Note that qulacs-gpu includes CPU simulator. You don't need to install both.

Qulacs is tested on the following systems.

  • Ubuntu 20.04
  • macOS Big Sur 11
  • Windows Server 2019

If you encounter some troubles, see troubleshooting.

How to install

Install with default options (Multi-thread without GPU):

pip install .

If AVX2 instructions are not supported, SIMD optimization is automatically disabled.

Install with GPU support (CUDA is required):

USE_GPU=Yes pip install .

Install single-thread Qulacs:

USE_OMP=No pip install .

The number of threads used in Qulacs installed with default options can be controlled via the environment variable OMP_NUM_THREADS or QULACS_NUM_THREADS. While OMP_NUM_THREADS affects the parallelization of other libraries, QULACS_NUM_THREADS controls only the parallelization of QULACS. Or, if you want to force only Qulacs to use a single thread, You can install single-thread Qulacs with the above command.

For development purpose, optional dependencies can be installed as follows.

# Install development tools
pip install .[dev]
# Install dependencies for document generation
pip install .[doc]

Uninstall Qulacs:

pip uninstall qulacs

Use Qulacs as C++ library

Build with GCC

Static libraries of Qulacs can be built with the following commands:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
./script/build_gcc.sh

To build shared libraries, execute make shared at ./qulacs/build folder. When you want to build with GPU, use build_gcc_with_gpu.sh instead of build_gcc.sh.

Then, you can build your codes with the following gcc command:

g++ -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cpp -lvqcsim_static -lcppsim_static -lcsim_static -fopenmp

If you want to run your codes with GPU, include cppsim/state_gpu.hpp and use QuantumStateGpu instead of QuantumState and build with the following command:

nvcc -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cu -lvqcsim_static -lcppsim_static -lcsim_static -lgpusim_static -D _USE_GPU -lcublas -Xcompiler -fopenmp

Build with MSVC

Static libraries of Qulacs can be built with the following command:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
script/build_msvc_2017.bat

When you want to build with GPU, use build_msvc_2017_with_gpu.bat. If you use MSVC with other versions, use build_msvc_2015.bat or edit the generator name in build_msvc_2017.bat.

Your C++ codes can be built with Qulacs with the following process:

  1. Create an empty project.
  2. Select "x64" as an active solution platform.
  3. Right Click your project name in Solution Explorer, and select "Properties".
  4. At "VC++ Directories" section, add the full path to ./qulacs/include to "Include Directories"
  5. At "VC++ Directories" section, add the full path to ./qulacs/lib to "Library Directories"
  6. At "C/C++ -> Code Generation" section, change "Runtime library" to "Multi-threaded (/MT)".
  7. At "Linker -> Input" section, add vqcsim_static.lib;cppsim_static.lib;csim_static.lib; to "Additional Dependencies".

Tutorial and API documents

See the following documents for tutorials.

Python sample code

from qulacs import Observable, QuantumCircuit, QuantumState
from qulacs.gate import Y,CNOT,merge

state = QuantumState(3)
state.set_Haar_random_state()

circuit = QuantumCircuit(3)
circuit.add_X_gate(0)
merged_gate = merge(CNOT(0,1),Y(1))
circuit.add_gate(merged_gate)
circuit.add_RX_gate(1,0.5)
circuit.update_quantum_state(state)

observable = Observable(3)
observable.add_operator(2.0, "X 2 Y 1 Z 0")
observable.add_operator(-3.0, "Z 2")
value = observable.get_expectation_value(state)
print(value)

If you want to run it on GPU, install GPU-enabled qulacs and replace QuantumState in the above codes with QuantumStateGpu.

C++ sample code

#include <iostream>
#include <cppsim/state.hpp>
#include <cppsim/circuit.hpp>
#include <cppsim/observable.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>

int main(){
    QuantumState state(3);
    state.set_Haar_random_state();

    QuantumCircuit circuit(3);
    circuit.add_X_gate(0);
    auto merged_gate = gate::merge(gate::CNOT(0,1),gate::Y(1));
    circuit.add_gate(merged_gate);
    circuit.add_RX_gate(1,0.5);
    circuit.update_quantum_state(&state);

    Observable observable(3);
    observable.add_operator(2.0, "X 2 Y 1 Z 0");
    observable.add_operator(-3.0, "Z 2");
    auto value = observable.get_expectation_value(&state);
    std::cout << value << std::endl;
    return 0;
}

If you place the above codes in the root directory of this repository(e.g., qulacs/main.cpp), you can build your codes with the following command:

g++ -O2 -I ./include -L ./lib main.cpp -fopenmp -lcppsim_static -lcsim_static

If you want to run it on GPU, include cppsim/state_gpu.hpp and replace QuantumState with QuantumStateGpu.

How to cite

Please cite this arXiv paper: Qulacs: a fast and versatile quantum circuit simulator for research purpose

Information

Experimental new features of Qulacs that have been developed in the Osaka University repository Qulacs-Osaka/qulacs-osaka will be integrated into the original Qulacs. The following new features will be added!!!

Integration date

Scheduled around August 2022.

New features

The main new features are as follows

  • Providing type hint files for Python
    • Configure tools such as mypy to take full advantage of type hint information.
    • mypy can detect the use of incorrect argument types in the qulacs API.
  • Sending exceptions with detailed information
    • Makes it easier to understand the cause of the error.
    • (For Jupyter Notebook users) kernel is less likely to crash if incorrect input is given.
  • Added backprop (gradient calculation by error back propagation method) to ParametricQuantumCircuit
    • It is faster than calculating gradients one by one.
  • Gradient Calculator

Scope of impact

The existing functionality has not been changed, so the existing code using Qulacs will continue to work as is. However, since the implementation language of csim has been changed from C to C++, changes may be necessary if you have been using direct calls to csim. Due to the C++ change, all complex numbers are now handled by std::complex.

Add dependency libraries

This integration adds boost as a dependency library. There will be some changes in the installation procedure.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qulacs-0.6.2.tar.gz (786.5 kB view details)

Uploaded Source

Built Distributions

qulacs-0.6.2-cp311-cp311-win_amd64.whl (575.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

qulacs-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (870.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

qulacs-0.6.2-cp311-cp311-macosx_11_0_arm64.whl (576.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

qulacs-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl (649.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

qulacs-0.6.2-cp310-cp310-win_amd64.whl (575.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

qulacs-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (870.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

qulacs-0.6.2-cp310-cp310-macosx_11_0_arm64.whl (576.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

qulacs-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl (649.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

qulacs-0.6.2-cp39-cp39-win_amd64.whl (557.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

qulacs-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (870.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

qulacs-0.6.2-cp39-cp39-macosx_11_0_arm64.whl (576.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

qulacs-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl (650.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

qulacs-0.6.2-cp38-cp38-win_amd64.whl (574.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

qulacs-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (870.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

qulacs-0.6.2-cp38-cp38-macosx_11_0_arm64.whl (576.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

qulacs-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl (649.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

qulacs-0.6.2-cp37-cp37m-win_amd64.whl (571.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

qulacs-0.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (890.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

qulacs-0.6.2-cp37-cp37m-macosx_10_9_x86_64.whl (640.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file qulacs-0.6.2.tar.gz.

File metadata

  • Download URL: qulacs-0.6.2.tar.gz
  • Upload date:
  • Size: 786.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for qulacs-0.6.2.tar.gz
Algorithm Hash digest
SHA256 a459b1b55652fa82d716fac360ea35a8edf6fd2864112105d5ea9b9f169c51bb
MD5 3ed59df727031e5e262688ea06a86d0c
BLAKE2b-256 b27b7217f4b913411f3462a6b39d8a37664d4f28d60d2952f603d25f5204a71c

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 575.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b4d2659ce0f8a6c90661ae38856202a8f1dc425b50c7857958ae4ac2e0c65471
MD5 bcde67dfd5635d72a6df08d198cdc67a
BLAKE2b-256 7c813fb9e893293c7554294eace998a87f34295eb4d8b44bd7f749dc4f99ba5c

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 846aa2f27125ed75e982ec00e27398eda6076084fabc0a8af3d6d7256d3aa2e9
MD5 ec172df7827756196763aaa41251e29c
BLAKE2b-256 943e3aca05fd7d6dcb93ef45570f1dd72dca7d019af8d2a0502e338e6d710900

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2e12dda71a786b56c74548ba910121ac588283b7d9027bf5b0e1abe4ba86ae9
MD5 509e0bb9a9dade27650ae175c7dc864a
BLAKE2b-256 779eb65cf58595c656e763f66e2047e57cca77fe90828986090ef275f3a7ac89

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e143fa8eb2f713fdd662173d2d6e8b6092a438a7fd2ab88368f802ca9d5671f7
MD5 7d25ec47687b4e4e083c1606a7632c3d
BLAKE2b-256 fd476999d4da0cd4a27b77898403196a1811a533c2bcc9d2ab37dc2a1557cda8

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 575.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb9a7b44fa1c749132ff9a9221426c4804038e3d15dcdcfe404920ea45641bd4
MD5 fe51c728917feada8649587a04e5f328
BLAKE2b-256 246d811e8f7e72ab966ee3983f287adde324f701e28f18c404bb8c4afa3caebf

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2523d44970d1a8b398c8b259c63249ee5ddffeeb4b81ab5c9ff46b3444e09678
MD5 1e5ffe956fb73b0c690a5b6c514fbd13
BLAKE2b-256 6f4250cca06dae236d5a6a34bcd739d6c378f10711f100d0d9e6dab3c61138db

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 942726ce5caeacb49204d83fa2b8e2e4ef8110c6dce66e5fcde095a615b4eb37
MD5 3e424dbec501e907474dec6cd2fc6c17
BLAKE2b-256 d157d664f9aef88882379f4891bc893c1e67bccc35dac5e75e96b2fb4129902c

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 84add575af0fea63dcb15147043aac270079a3cfeacfeffd60244397b34b1dd1
MD5 bfedad771655dab26e13b8baf41adca4
BLAKE2b-256 403c6b86f5ffc2b9c5d9a86f117ff3c6eb1274f41601096437589fe2e07d255e

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 557.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6786439f13768a3849e5abb6e1d960362a3cc0157910f9e83aae28df4e9656d4
MD5 6d2ec2fa4f7b0eb456553c0419ef8039
BLAKE2b-256 3f77d91f7880e42c08fd2b80f73c017ac165de5138a7f231518dfb05d0edf827

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d020c6c7a3046d5b0a8c2e09913308f0b7df4f1f2773e7ef016b62878295dff
MD5 663313418229a5d5f9fbcae1402c2fb5
BLAKE2b-256 15d7ec8617fa52ee685f9a15c397a17bc38d51389a9b23636e7745df7b43b061

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 802d38b6338f6aeb18204bb302ee30d4c4ab603e171a83dc66aef6fcc832d911
MD5 617ce7a8dd25867c00a24f02f96989b0
BLAKE2b-256 82a468d885c5207d1af3d3ae416b0fc0f50088bae4e22c46af4d075732d5fa55

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5633e451b154a94eb3a58351f5f37b1312da7b2143c4847e549e001e522bfeb
MD5 82c736402aaf73edbfd0c9d819bfc1e2
BLAKE2b-256 4c728113cee1a4881712a93096577257215fd876b6bea7e16724b3357a356802

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 574.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 390d522701d124af3b6ff1a03f9514e031386272adfa7851416dcfa67226862c
MD5 9f8e8de9c9eb1e3583cc1fe4347723ef
BLAKE2b-256 535bda18ff692097bc13610e2b7ba82831ab0c64fa141d1afdb66be46e34561a

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db3a0db3cd7b3c0b83a2c5e471fcc6147eef2b3053c60b6755396fcc6ed6b356
MD5 a565a6dc8a15e886611eb57c3e6bcfc9
BLAKE2b-256 9412e951bff3cce884e49488177cd7c12ad66e18188bd221b0566d4fa4a46c0b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8bcc97aef9f93dfef9d2c464870526880cc381e58b5f698783b76528589d4982
MD5 51cf6d7bd4aa7ec081742e2326e868d5
BLAKE2b-256 07d504797dcfdcc8bd78495461a7574fd030604413c1ca51dbce7589a1d6fa69

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 835f527ecdcdc2655f0560513fec3a8c9f28986adefe8d3f09852f82d1cf6103
MD5 9892fe7dddc5626296f958420ddaf2ac
BLAKE2b-256 cef6b24bf4fcd9848c8b31a1a4731512b8715e0984c635e9b27a3bffc77def16

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 571.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 94414b5b76dbd48224b499383564a76ed9520c19f94f5892a20830826a712592
MD5 e77aa3cc809b9a0ac118c604429e5924
BLAKE2b-256 07b6c23c060192f8d7c9357ba8aaff59a55ed5ea9dab41e7abcc496ec941a721

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e661fde991de47e9db229db86a68671548c63e8bdd84b453571594467b288ef7
MD5 c3c54a8340379cf9ca27df8817bcc352
BLAKE2b-256 482dfcb45cd1bf85d5965ccdce049727ef51b4922391e5307e406f06b16c95b1

See more details on using hashes here.

File details

Details for the file qulacs-0.6.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d84cc1a79b667445bf7c7c44c6e9213d1393851adaa587b356f97141f3e45ac
MD5 9119325b9d2cf23ecf37d66509918933
BLAKE2b-256 56d1695f5ea1f9b036d07769d321dfe47d14ccceb66407f4e0b27ad5c6c9e1d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page